Source rock extracts and crude oils from the Songliao Basin were analyzed by high-temperature gas chromatography (HTGC), gas chromatography-mass spectrometry (HTGC-MS) and gas chromatography-isotope ratio-mass spectro...Source rock extracts and crude oils from the Songliao Basin were analyzed by high-temperature gas chromatography (HTGC), gas chromatography-mass spectrometry (HTGC-MS) and gas chromatography-isotope ratio-mass spectrometry (GC-IRMS), for high molecular-weight alkanes. The distributions of n-alkanes in the Nenjiang Formation extracts are in the C14―C63 range; a bimodal distribution occurs in the C-21 and C21―40 regions. The C30―C37 n-alkanes are accompanied by C29―C35 hopanes, whereas the high molecular-weight C45―C47 n-alkanes co-occur with abundant isoalkanes, alkylcyclohexanes and alkylcyclopentanes. The high δ 13C values of the n-alkanes and the microscopic maceral compositions indicate a highly diversified organic source input for the Nenjiang Formation source rocks, ranging from aquatic plants, blue alge-bacteria, to land plant material. In contrast, n-alkanes in the rock extracts of the Qingshankou Formation are characterized by a single modal distribution, with relatively low abundances of C29―C35 hopanes, but high molecular-weight isoalkanes, alkylcyclohexanes and alkylcyclopentanes. The relatively low δ 13C values of C22―C44 n-alkanes and organic material compositions indicate that the source rocks in the Qingshankou Formation contain dominantly type I algal organic matter. The relative abundance of C+40 compounds in source rocks changes little at low maturity stage, but decreases drastically at higher maturity levels, with a concurrent reduction in the odd/even carbon predominance. In crude oils, in contrast, the relative abundance of C+40 compounds appears to relate closely with the oil source and oil viscosity.展开更多
With wax content of 1.62%, heavy oil has been produced from the sandstone reservoirs of Neogene Guantao Formation (Ng1m). In the GC and GC-MS RIC profiles of its aliphatic fraction, n-alkanes are totally lost, which s...With wax content of 1.62%, heavy oil has been produced from the sandstone reservoirs of Neogene Guantao Formation (Ng1m). In the GC and GC-MS RIC profiles of its aliphatic fraction, n-alkanes are totally lost, which shows the result of heavy biodegradedation. However, the remaining trace C13-C36 n-alkanes can be still seen from its mlz 85 mass chromatogram. In addition, a complete series of C35-C73 high molecular weight (HMW) n-alkanes was detected by high-temperature gas chromatography (HTGC). The HMW R-alkane series shows a normal distribution pattern, a major peak at nC43, obvious odd-carbon-number predominance, CPI37-55 and OEP45-49 values up to 1.17 and 1.16-1.20 respectively. The present study not only has conformed the strong resistibility of HMW n-alkanes to biodegradation in crude oils as concluded by previous researchers, but also has provided some significant information on source input and maturity for the heavily biodegraded oil in the Qianmiqiao region.展开更多
With a production of 208.2 m3/d, heavy oil was produced by drill stem test (DST) from three shallow reservoirs in Sand Group Nos. Ⅰ and Ⅲ of the Neogene Guantao Formation (NgⅠ and NgⅢ) and the Eogene Dongying Form...With a production of 208.2 m3/d, heavy oil was produced by drill stem test (DST) from three shallow reservoirs in Sand Group Nos. Ⅰ and Ⅲ of the Neogene Guantao Formation (NgⅠ and NgⅢ) and the Eogene Dongying Formation (Ed) in an exploratory well Ban-14-1 within the Qianmiqiao region, Bohai Bay Basin, northern China. Based on the GC and GC-MS data of the NgⅠ and NgⅢ heavy oil samples, all n-alkanes and most isoprenoid hydrocarbons are lost and the GC baseline appears as an evident 'hump', implying a large quantity of unresolved complex mixture (UCM), which typically revealed a result of heavy biodegradation. However, there still is a complete series of C14-C73 n-alkanes in the high-temperature gas chromatograms (HTGC) of the heavy oil, among which, the abundance of C30- n-alkanes are drastically reduced. The C35-C55 high molecular weight (HMW) n-alkanes are at high abundance and show a normal distribution pattern with major peak at C43 and an obvious odd-carbon-number predominance with CPI37-55 and OEP45-49 values of 1.17 and 1.16-1.20, respectively. According to GC-MS analysis, the heavy oil is characterized by dual source inputs of aquatic microbes and terrestrial higher plants. Various steranes and tricyclic terpanes indicate an algal origin, and hopane-type triterpanes, C24 tetracyclic terpane and drimane series show the bacterial contribution. With the odd-carbon-number preference, HMW n-alkanes provide significant information not only on higher plant source input and immaturity, but also on the strong resistibility to biodegradation.展开更多
Although a variety of precursors have been proposed for the formation of high molecular weight hydro-carbons (HMWHCs) in crude oil, their precise origin re-mains elusive. Quantitative studies of macrocrystalline wax a...Although a variety of precursors have been proposed for the formation of high molecular weight hydro-carbons (HMWHCs) in crude oil, their precise origin re-mains elusive. Quantitative studies of macrocrystalline wax and microcrystalline wax content of source rock extracts from the Damintun depression, Liaohe Basin, a typical high wax producing area, coupled with microscopical maceral composition studies and pyrolysis-GC analysis indicate that oil shale enriched in lacustrine biomass makes a primary contribution to wax in oil. The main precursors of high wax oil are lacustrine alginites and their amorphous matrix, which are highly aliphatic in nature and have high genera-tive potential for HMWHCs. Wax generation efficiency could be affected by organic material abundance and matur-ity. The high abundance and low maturity of organic mate-rial are favorite for the formation of high quantity of wax, which declines with decreasing organic abundance and in-creasing thermal maturity. This suggests that wax is derived from organic-rich lacustrine biomass at early stages of maturation (RO = 0.4%—0.7%). Although the contribution of high plant cuticular wax and sporopollen cannot be ruled out, lacustrine biomass is more important in the formation of high wax oil.展开更多
The high-waxy condensate in the Qianmiqiao Ordovician burial-hill zone, Bohai Gulf Basin, North China has been investigated by way of high temperature gas chromatography. As high-mature oil, its high molecular weight ...The high-waxy condensate in the Qianmiqiao Ordovician burial-hill zone, Bohai Gulf Basin, North China has been investigated by way of high temperature gas chromatography. As high-mature oil, its high molecular weight wax fraction is mainly composed of C35—C69 n-alkanes with CPI37—55 values of 0.94—1.10. On conditions that core-drilling of source rocks was limited and the exact location of source kitchen is still uncertain in the region, it is inferred that the ori-entation of main source kitchen for the condensate should be on the east of the burial-hill zone, i.e. from the direction of Qikou Sag, according to oil-oil correlation between the condensate and surrounding high-waxy oils as well as lateral distribution of the wax content of crude oils. In addi-tion, it is also further confirmed that the oil filling direction for this condensate reservoir is from NE to SW, i.e. from wells BS-4, through BS-7, to BS-8 based on the analyses of 9 maturity and 3 pyrrolic N-compound parameters.展开更多
基金Chinese National 973 Key ResearchDevelopment Program (Grant No. 2006CB701404)Daqing Oilfield Company Limited
文摘Source rock extracts and crude oils from the Songliao Basin were analyzed by high-temperature gas chromatography (HTGC), gas chromatography-mass spectrometry (HTGC-MS) and gas chromatography-isotope ratio-mass spectrometry (GC-IRMS), for high molecular-weight alkanes. The distributions of n-alkanes in the Nenjiang Formation extracts are in the C14―C63 range; a bimodal distribution occurs in the C-21 and C21―40 regions. The C30―C37 n-alkanes are accompanied by C29―C35 hopanes, whereas the high molecular-weight C45―C47 n-alkanes co-occur with abundant isoalkanes, alkylcyclohexanes and alkylcyclopentanes. The high δ 13C values of the n-alkanes and the microscopic maceral compositions indicate a highly diversified organic source input for the Nenjiang Formation source rocks, ranging from aquatic plants, blue alge-bacteria, to land plant material. In contrast, n-alkanes in the rock extracts of the Qingshankou Formation are characterized by a single modal distribution, with relatively low abundances of C29―C35 hopanes, but high molecular-weight isoalkanes, alkylcyclohexanes and alkylcyclopentanes. The relatively low δ 13C values of C22―C44 n-alkanes and organic material compositions indicate that the source rocks in the Qingshankou Formation contain dominantly type I algal organic matter. The relative abundance of C+40 compounds in source rocks changes little at low maturity stage, but decreases drastically at higher maturity levels, with a concurrent reduction in the odd/even carbon predominance. In crude oils, in contrast, the relative abundance of C+40 compounds appears to relate closely with the oil source and oil viscosity.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 40172056)the Research Found for the Doctoral Program of High Education (RFDP No. 2000042506)the Geological Research Institute, Dagang Oilfield (Group) Co. Ltd.
文摘With wax content of 1.62%, heavy oil has been produced from the sandstone reservoirs of Neogene Guantao Formation (Ng1m). In the GC and GC-MS RIC profiles of its aliphatic fraction, n-alkanes are totally lost, which shows the result of heavy biodegradedation. However, the remaining trace C13-C36 n-alkanes can be still seen from its mlz 85 mass chromatogram. In addition, a complete series of C35-C73 high molecular weight (HMW) n-alkanes was detected by high-temperature gas chromatography (HTGC). The HMW R-alkane series shows a normal distribution pattern, a major peak at nC43, obvious odd-carbon-number predominance, CPI37-55 and OEP45-49 values up to 1.17 and 1.16-1.20 respectively. The present study not only has conformed the strong resistibility of HMW n-alkanes to biodegradation in crude oils as concluded by previous researchers, but also has provided some significant information on source input and maturity for the heavily biodegraded oil in the Qianmiqiao region.
基金Th is study was supported by the National Natural Science Foundation of China(NSFC,no.40172056)the Research Fund for the Doctoral Program of Higher Education,China(RFDP,no.2000042506).
文摘With a production of 208.2 m3/d, heavy oil was produced by drill stem test (DST) from three shallow reservoirs in Sand Group Nos. Ⅰ and Ⅲ of the Neogene Guantao Formation (NgⅠ and NgⅢ) and the Eogene Dongying Formation (Ed) in an exploratory well Ban-14-1 within the Qianmiqiao region, Bohai Bay Basin, northern China. Based on the GC and GC-MS data of the NgⅠ and NgⅢ heavy oil samples, all n-alkanes and most isoprenoid hydrocarbons are lost and the GC baseline appears as an evident 'hump', implying a large quantity of unresolved complex mixture (UCM), which typically revealed a result of heavy biodegradation. However, there still is a complete series of C14-C73 n-alkanes in the high-temperature gas chromatograms (HTGC) of the heavy oil, among which, the abundance of C30- n-alkanes are drastically reduced. The C35-C55 high molecular weight (HMW) n-alkanes are at high abundance and show a normal distribution pattern with major peak at C43 and an obvious odd-carbon-number predominance with CPI37-55 and OEP45-49 values of 1.17 and 1.16-1.20, respectively. According to GC-MS analysis, the heavy oil is characterized by dual source inputs of aquatic microbes and terrestrial higher plants. Various steranes and tricyclic terpanes indicate an algal origin, and hopane-type triterpanes, C24 tetracyclic terpane and drimane series show the bacterial contribution. With the odd-carbon-number preference, HMW n-alkanes provide significant information not only on higher plant source input and immaturity, but also on the strong resistibility to biodegradation.
文摘Although a variety of precursors have been proposed for the formation of high molecular weight hydro-carbons (HMWHCs) in crude oil, their precise origin re-mains elusive. Quantitative studies of macrocrystalline wax and microcrystalline wax content of source rock extracts from the Damintun depression, Liaohe Basin, a typical high wax producing area, coupled with microscopical maceral composition studies and pyrolysis-GC analysis indicate that oil shale enriched in lacustrine biomass makes a primary contribution to wax in oil. The main precursors of high wax oil are lacustrine alginites and their amorphous matrix, which are highly aliphatic in nature and have high genera-tive potential for HMWHCs. Wax generation efficiency could be affected by organic material abundance and matur-ity. The high abundance and low maturity of organic mate-rial are favorite for the formation of high quantity of wax, which declines with decreasing organic abundance and in-creasing thermal maturity. This suggests that wax is derived from organic-rich lacustrine biomass at early stages of maturation (RO = 0.4%—0.7%). Although the contribution of high plant cuticular wax and sporopollen cannot be ruled out, lacustrine biomass is more important in the formation of high wax oil.
基金This study was supported by the National Natural Science Foundation of China (NSFC No. 40172056) the Research Found for the Doctoral Program of High Education (RFDP No. 2000042506).
文摘The high-waxy condensate in the Qianmiqiao Ordovician burial-hill zone, Bohai Gulf Basin, North China has been investigated by way of high temperature gas chromatography. As high-mature oil, its high molecular weight wax fraction is mainly composed of C35—C69 n-alkanes with CPI37—55 values of 0.94—1.10. On conditions that core-drilling of source rocks was limited and the exact location of source kitchen is still uncertain in the region, it is inferred that the ori-entation of main source kitchen for the condensate should be on the east of the burial-hill zone, i.e. from the direction of Qikou Sag, according to oil-oil correlation between the condensate and surrounding high-waxy oils as well as lateral distribution of the wax content of crude oils. In addi-tion, it is also further confirmed that the oil filling direction for this condensate reservoir is from NE to SW, i.e. from wells BS-4, through BS-7, to BS-8 based on the analyses of 9 maturity and 3 pyrrolic N-compound parameters.