Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is one of the most destructive diseases of rice worldwide. The rice-M, oryzae pathosystem has become a model in the study of plant-fungal interactions beca...Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is one of the most destructive diseases of rice worldwide. The rice-M, oryzae pathosystem has become a model in the study of plant-fungal interactions because of its scientific advancement and economic importance. Recent studies have identified a number of new pathogen- associated molecular patterns (PAMPs) and effectors from the blast fungus that trigger rice immune responses upon perception. Interaction analyses between avirulence effectors and their cognate resistance proteins have provided new insights into the molecular basis of plant-fungal interactions. In this review, we summarize the recent research on the characterization of those genes in both M. oryzae and rice that are important for the PAMP- and effector-triggered immunity recognition and signaling processes. We also discuss future directions for research that will further our understanding of this pathosystem.展开更多
After three decades of the amazing progress made on molecular studies of plant-microbe interactions(MPMI),we have begun to ask ourselves"what are the major questions still remaining?"as if the puzzle has onl...After three decades of the amazing progress made on molecular studies of plant-microbe interactions(MPMI),we have begun to ask ourselves"what are the major questions still remaining?"as if the puzzle has only a few pieces missing.Such an exercise has ultimately led to the realization that we still have many more questions than answers.Therefore,it would be an impossible task for us to project a coherent"big picture"of the MPMI field in a single review.Instead,we provide our opinions on where we would like to go in our research as an invitation to the community to join us in this exploration of new MPMI frontiers.展开更多
Plant-pathogenic Xanthomonas infects a wide variety of host plants and causes many devastating diseases on crops. Transcription activator-like effectors(TALEs) are delivered by a type III secretion system(T3 SS) o...Plant-pathogenic Xanthomonas infects a wide variety of host plants and causes many devastating diseases on crops. Transcription activator-like effectors(TALEs) are delivered by a type III secretion system(T3 SS) of Xanthomonas into plant nuclei to directly bind specific DNA sequences(TAL effector-binding elements, EBEs) on either strand of host target genes with an unique modular DNA-binding domain and to bidirectionally drive host gene transcription. The target genes in plants consist of host susceptibility(S) genes promoting disease(ETS) and resistance(R) genes triggering defense(ETI). Here we generally summarized the discovery of TALEs in Xanthomonas species, their functions in bacterial pathogenicity in plants and their target genes in different host plants, and then focused on the newly revealed modes of protein action in triggering or suppressing plant defense.展开更多
The original online version of this article (Ghozlan, M.H., EL-Argawy, E., Tokgöz, S., Lakshman, D.K. and Mitra, A. (2020) Plant Defense against Necrotrophic Pathogens. American Journal of Plant Sciences, 11, 212...The original online version of this article (Ghozlan, M.H., EL-Argawy, E., Tokgöz, S., Lakshman, D.K. and Mitra, A. (2020) Plant Defense against Necrotrophic Pathogens. American Journal of Plant Sciences, 11, 2122-2138. https://doi.org/10.4236/ajps.2020.1112149) was published mistakenly without another co-author, Nikita Gambhir. In this regard, we revise authors and “how to cite” sections by adding her name.展开更多
Recent studies have shown that global translational reprogramming is an early activation event in pattern-triggered immunity,when plants recognize microbe-associated molecular patterns.However,it is not fully known wh...Recent studies have shown that global translational reprogramming is an early activation event in pattern-triggered immunity,when plants recognize microbe-associated molecular patterns.However,it is not fully known whether translational regulation also occurs in subsequent immune responses,such as effector-triggered immunity(ETI).In this study,we performed genome-wide ribosome profiling in Arabidopsis upon RPS2-mediated ETI activation and discovered that specific groups of genes were translationally regulated,mostly in coordination with transcription.These genes encode enzymes involved in aromatic amino acid,phenylpropanoid,camalexin,and sphingolipid metabolism.The functional significance of these components in ETI was confirmed by genetic and biochemical analyses.Our findings provide new insights into diverse translational regulation of plant immune responses and demonstrate that translational coordination of metabolic gene expression is an important strategy for ETI.展开更多
Ralstonia solanacearum is a widespread plant bacterial pathogen that can launch a range of type Ⅲ effectors(T3Es)to cause disease.In this study,we isolate a pathogenic R.solanacearum strain named P380 from tomato rhi...Ralstonia solanacearum is a widespread plant bacterial pathogen that can launch a range of type Ⅲ effectors(T3Es)to cause disease.In this study,we isolate a pathogenic R.solanacearum strain named P380 from tomato rhizosphere.Five out of 12 core T3Es of strain P380 are introduced into Pseudomonas syringae DC3000D36E separately to determine their functions in interacting with plants.DC3000D36E that harbors each effector suppresses FliC-triggered Pti5 and ACRE31 expression,ROS burst,and callose deposition.RipAE,RipU,and RipW elicit cell death as well as upregulate the MAPK cascades in Nicotiana benthamiana.The derivatives RipC1^(△DDXDX(T/V))and RipW^(△DDKXXQ)but not RipAE^(K310R) fail to suppress ROS burst.Moreover,RipAE^(K310R) and RipW^(△DDKXXQ) retain the cell death elicitation ability.RipAE and RipW are associated with salicylic acid and jasmonic acid pathways,respectively.RipAE and RipAQ significantly promote the propagation of DC3000D36E in plants.The five core T3Es localize in diverse subcellular organelles of nucleus,plasma membrane,endoplasmic reticulum,and Golgi network.The suppressor of G2 allele of Skp1 is required for RipAE but not RipU-triggered cell death in N.benthamiana.These results indicate that the core T3Es in R.solanacearum play diverse roles in plantpathogen interactions.展开更多
Set queries are an important topic and have attracted a lot of attention. Earlier research mainly concentrated on set containment queries. In this paper we focus on the T-Overlap query which is the foundation of the s...Set queries are an important topic and have attracted a lot of attention. Earlier research mainly concentrated on set containment queries. In this paper we focus on the T-Overlap query which is the foundation of the set similarity query. To address this issue, unlike traditional algorithms that are based on an inverted index, we design a new paradigm based on the prefix tree (trie) called the expanded trie index (ETI) which expands the trie node structure by adding some new properties. Based on ETI, we convert the T- Overlap problem to finding query nodes with specific query depth equaling to T and propose a new algorithm called T- Similarity to solve T-Overlap efficiently. Then we carry out a three-step framework to extend T-Overlap to other simi- larity predicates. Extensive experiments are carried out to compare T-Similarity with other inverted index based algorithms from cardinality of query, overlap threshold, dataset size, the number of distinct elements and so on. Results show that T-Similarity outperforms the state-of-the-art algorithms in many aspects.展开更多
基金This work was supported by the US NSF-IOS to G.L.W. (1120949)the National Natural Science Foundation of China to W.D.L. (31272034)+3 种基金 Y.S.N. (31101405) and X.L.W. (31101404) the 973 Project (2012CBl14005) of Ministry of Science and Technology China and the National Transgenic Crop Initiative to G.L.W. (2012ZX08009001) and the Scientific and Technological Innovation Program of Hunan Universities from Hunan Department of Science and Technology and the Program for Innovative Research Team in University from Ministry of Education in China IRT1239) to Z.L.W. No conflict of interest declared.
文摘Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is one of the most destructive diseases of rice worldwide. The rice-M, oryzae pathosystem has become a model in the study of plant-fungal interactions because of its scientific advancement and economic importance. Recent studies have identified a number of new pathogen- associated molecular patterns (PAMPs) and effectors from the blast fungus that trigger rice immune responses upon perception. Interaction analyses between avirulence effectors and their cognate resistance proteins have provided new insights into the molecular basis of plant-fungal interactions. In this review, we summarize the recent research on the characterization of those genes in both M. oryzae and rice that are important for the PAMP- and effector-triggered immunity recognition and signaling processes. We also discuss future directions for research that will further our understanding of this pathosystem.
基金grants from the National Institutes of Health(NIH 1R35GM118036)National Science Foundation(IOS 1645589)+5 种基金Howard Hughes Medical Institute to X.D.,grants from the NIH(NIH 1R35GM136402)National Science Foundation(NSF 1937855-0)United States Department of Agriculture(USDA,2019-70016-2979)G.C.,a grant from National Natural Science Foundation of China(31830019)J.-M.Z.,and a grant from National Natural Science Foundation of China(31922075)Youth Innovation Promotion Association of the Chinese Academy of Sciences to J.Z.
文摘After three decades of the amazing progress made on molecular studies of plant-microbe interactions(MPMI),we have begun to ask ourselves"what are the major questions still remaining?"as if the puzzle has only a few pieces missing.Such an exercise has ultimately led to the realization that we still have many more questions than answers.Therefore,it would be an impossible task for us to project a coherent"big picture"of the MPMI field in a single review.Instead,we provide our opinions on where we would like to go in our research as an invitation to the community to join us in this exploration of new MPMI frontiers.
基金supported by the National Natural Science Foundation of China (31230059, 31471742)the Special Fund for Agro-scientific Research in the Public Interest of China (201303015)
文摘Plant-pathogenic Xanthomonas infects a wide variety of host plants and causes many devastating diseases on crops. Transcription activator-like effectors(TALEs) are delivered by a type III secretion system(T3 SS) of Xanthomonas into plant nuclei to directly bind specific DNA sequences(TAL effector-binding elements, EBEs) on either strand of host target genes with an unique modular DNA-binding domain and to bidirectionally drive host gene transcription. The target genes in plants consist of host susceptibility(S) genes promoting disease(ETS) and resistance(R) genes triggering defense(ETI). Here we generally summarized the discovery of TALEs in Xanthomonas species, their functions in bacterial pathogenicity in plants and their target genes in different host plants, and then focused on the newly revealed modes of protein action in triggering or suppressing plant defense.
文摘The original online version of this article (Ghozlan, M.H., EL-Argawy, E., Tokgöz, S., Lakshman, D.K. and Mitra, A. (2020) Plant Defense against Necrotrophic Pathogens. American Journal of Plant Sciences, 11, 2122-2138. https://doi.org/10.4236/ajps.2020.1112149) was published mistakenly without another co-author, Nikita Gambhir. In this regard, we revise authors and “how to cite” sections by adding her name.
基金This study was supported by grants from NIH R35GM118036-02,NSF IOS 1645589,and HHMI-GBMF(grant no.GBMF3032)to X.D.and a Hargitt fellowship to H.Y.
文摘Recent studies have shown that global translational reprogramming is an early activation event in pattern-triggered immunity,when plants recognize microbe-associated molecular patterns.However,it is not fully known whether translational regulation also occurs in subsequent immune responses,such as effector-triggered immunity(ETI).In this study,we performed genome-wide ribosome profiling in Arabidopsis upon RPS2-mediated ETI activation and discovered that specific groups of genes were translationally regulated,mostly in coordination with transcription.These genes encode enzymes involved in aromatic amino acid,phenylpropanoid,camalexin,and sphingolipid metabolism.The functional significance of these components in ETI was confirmed by genetic and biochemical analyses.Our findings provide new insights into diverse translational regulation of plant immune responses and demonstrate that translational coordination of metabolic gene expression is an important strategy for ETI.
基金supported by the National Key R&D Program of China(2019YFD1002000)the Science and Technology Programs of the Shandong Tobacco(KN273)Zunyi Tobacco(2021XM03).
文摘Ralstonia solanacearum is a widespread plant bacterial pathogen that can launch a range of type Ⅲ effectors(T3Es)to cause disease.In this study,we isolate a pathogenic R.solanacearum strain named P380 from tomato rhizosphere.Five out of 12 core T3Es of strain P380 are introduced into Pseudomonas syringae DC3000D36E separately to determine their functions in interacting with plants.DC3000D36E that harbors each effector suppresses FliC-triggered Pti5 and ACRE31 expression,ROS burst,and callose deposition.RipAE,RipU,and RipW elicit cell death as well as upregulate the MAPK cascades in Nicotiana benthamiana.The derivatives RipC1^(△DDXDX(T/V))and RipW^(△DDKXXQ)but not RipAE^(K310R) fail to suppress ROS burst.Moreover,RipAE^(K310R) and RipW^(△DDKXXQ) retain the cell death elicitation ability.RipAE and RipW are associated with salicylic acid and jasmonic acid pathways,respectively.RipAE and RipAQ significantly promote the propagation of DC3000D36E in plants.The five core T3Es localize in diverse subcellular organelles of nucleus,plasma membrane,endoplasmic reticulum,and Golgi network.The suppressor of G2 allele of Skp1 is required for RipAE but not RipU-triggered cell death in N.benthamiana.These results indicate that the core T3Es in R.solanacearum play diverse roles in plantpathogen interactions.
文摘Set queries are an important topic and have attracted a lot of attention. Earlier research mainly concentrated on set containment queries. In this paper we focus on the T-Overlap query which is the foundation of the set similarity query. To address this issue, unlike traditional algorithms that are based on an inverted index, we design a new paradigm based on the prefix tree (trie) called the expanded trie index (ETI) which expands the trie node structure by adding some new properties. Based on ETI, we convert the T- Overlap problem to finding query nodes with specific query depth equaling to T and propose a new algorithm called T- Similarity to solve T-Overlap efficiently. Then we carry out a three-step framework to extend T-Overlap to other simi- larity predicates. Extensive experiments are carried out to compare T-Similarity with other inverted index based algorithms from cardinality of query, overlap threshold, dataset size, the number of distinct elements and so on. Results show that T-Similarity outperforms the state-of-the-art algorithms in many aspects.