期刊文献+
共找到174篇文章
< 1 2 9 >
每页显示 20 50 100
All Single Traveling Wave Solutions to (3+1)-Dimensional Nizhnok-Novikov-Veselov Equation 被引量:12
1
作者 LIU Cheng-Shi 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第6期991-992,共2页
Using elementary integral method, a complete classification of all possible exact traveling wave solutions to (3+1)-dimensional Nizhnok-Novikov-Veselov equation is given. Some solutions are new.
关键词 3+1)-dimensional Nizhnok-Novikov-Veselov equation traveling wave solution elementary integral method
下载PDF
New Exact Solutions and Conservation Laws to (3+1)-Dimensional Potential-YTSF Equation 被引量:10
2
作者 ZHANG Li-Hua LIU Xi-Qiang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第3期487-492,共6页
Using the modified find some new exact solutions to Lie point symmetry groups and also get conservation laws, of the CK's direct method, we build the relationship between new solutions and old ones and the (3+1)-d... Using the modified find some new exact solutions to Lie point symmetry groups and also get conservation laws, of the CK's direct method, we build the relationship between new solutions and old ones and the (3+1)-dimensional potentiaial-YTSF equation. Baaed on the invariant group theory, Lie symmetries of the (3+1)-dimensional potential-YTSF equation are obtained. We equation with the given Lie symmetry. 展开更多
关键词 new exact solutions Lie point symmetry groups conservation laws 3+1)-dimensional potential-YTSF equation
下载PDF
Exact Solutions to (3+1) Conformable Time Fractional Jimbo–Miwa,Zakharov–Kuznetsov and Modified Zakharov–Kuznetsov Equations 被引量:7
3
作者 Alper Korkmaz 《Communications in Theoretical Physics》 SCIE CAS CSCD 2017年第5期479-482,共4页
Exact solutions to conformable time fractional (3+1)-dimensional equations are derived by using the modified form of the Kudryashov method. The compatible wave transformation reduces the equations to an ODE with integ... Exact solutions to conformable time fractional (3+1)-dimensional equations are derived by using the modified form of the Kudryashov method. The compatible wave transformation reduces the equations to an ODE with integer orders. The predicted solution of the finite series of a rational exponential function is substituted into this ODE.The resultant polynomial equation is solved by using algebraic operations. The method works for the Jimbo–Miwa, the Zakharov–Kuznetsov, and the modified Zakharov–Kuznetsov equations in conformable time fractional forms. All the solutions are expressed in explicit forms. 展开更多
关键词 fractional (3+1)-dimensional Jimbo–Miwa equation fractional modified Zakharov–Kuznetsov equation modified Kudryashov method fractional Zakharov–Kuznetsov equation exact solutions
原文传递
On some new travelling wave structures to the(3+1)-dimensional Boiti-Leon-Manna-Pempinelli model
4
作者 Kalim U.Tariq Ahmet Bekir Muhammad Zubair 《Journal of Ocean Engineering and Science》 SCIE 2024年第2期99-111,共13页
In this article,the(1/G')-expansion method,the Bernoulli sub-ordinary differential equation method and the modified Kudryashov method are implemented to construct a variety of novel analytical solutions to the(3+1... In this article,the(1/G')-expansion method,the Bernoulli sub-ordinary differential equation method and the modified Kudryashov method are implemented to construct a variety of novel analytical solutions to the(3+1)-dimensional Boiti-Leon-Manna-Pempinelli model representing the wave propagation through incompressible fluids.The linearization of the wave structure in shallow water necessitates more critical wave capacity conditions than it does in deep water,and the strong nonlinear properties are perceptible.Some novel travelling wave solutions have been observed including solitons,kink,periodic and rational solutions with the aid of the latest computing tools such as Mathematica or Maple.The physical and analytical properties of several families of closed-form solutions or exact solutions and rational form function solutions to the(3+1)-dimensional Boiti-Leon-Manna-Pempinelli model problem are examined using Mathematica. 展开更多
关键词 The(3+1)-dimensional Boiti-Leon-Manna-Pempinelli model The(1/G')-expansion method The Bernoulli sub-ODE method The modified Kudryashov method
原文传递
Grammian Determinant Solution and Pfaffianization for a (3+1)-Dimensional Soliton Equation 被引量:5
5
作者 WU Jian-Ping GENG Xian-Guo2 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第11期791-794,共4页
Based on the Pfaffian derivative formulae,a Grammian determinant solution for a(3+1)-dimensionalsoliton equation is obtained.Moreover,the Pfaffianization procedure is applied for the equation to generate a newcoupled ... Based on the Pfaffian derivative formulae,a Grammian determinant solution for a(3+1)-dimensionalsoliton equation is obtained.Moreover,the Pfaffianization procedure is applied for the equation to generate a newcoupled system.At last,a Gram-type Pfaffian solution to the new coupled system is given. 展开更多
关键词 3+1)-dimensional soliton equation Grammian determinant solution PFAFFIANIZATION Gram-type Pfaffian solution
下载PDF
Painlevé analysis,auto-Bäcklund transformation and new exact solutions of(2+1)and(3+1)-dimensional extended Sakovich equation with time dependent variable coefficients in ocean physics
6
作者 Shailendra Singh S.Saha Ray 《Journal of Ocean Engineering and Science》 SCIE 2023年第3期246-262,共17页
This article considers time-dependent variable coefficients(2+1)and(3+1)-dimensional extended Sakovich equation.Painlevéanalysis and auto-Bäcklund transformation methods are used to examine both the consider... This article considers time-dependent variable coefficients(2+1)and(3+1)-dimensional extended Sakovich equation.Painlevéanalysis and auto-Bäcklund transformation methods are used to examine both the considered equations.Painlevéanalysis is appeared to test the integrability while an auto-Bäcklund transformation method is being presented to derive new analytic soliton solution families for both the considered equations.Two new family of exact analytical solutions are being obtained success-fully for each of the considered equations.The soliton solutions in the form of rational and exponential functions are being depicted.The results are also expressed graphically to illustrate the potential and physical behaviour of both equations.Both the considered equations have applications in ocean wave theory as they depict new solitary wave soliton solutions by 3D and 2D graphs. 展开更多
关键词 (2+1)-dimensional extended Sakovich equation (3+1)-dimensional extended Sakovich equation Auto-Bäcklund transformation Painlevéanalysis Solitary wave solution
原文传递
Lie symmetry analysis and invariant solutions for the(3+1)-dimensional Virasoro integrable model
7
作者 胡恒春 李雅琦 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期249-254,共6页
Lie symmetry analysis is applied to a(3+1)-dimensional Virasoro integrable model and the corresponding similarity reduction equations are obtained with the different infinitesimal generators.Invariant solutions with a... Lie symmetry analysis is applied to a(3+1)-dimensional Virasoro integrable model and the corresponding similarity reduction equations are obtained with the different infinitesimal generators.Invariant solutions with arbitrary functions for the(3+1)-dimensional Virasoro integrable model,including the interaction solution between a kink and a soliton,the lump-type solution and periodic solutions,have been studied analytically and graphically. 展开更多
关键词 (3+1)-dimensional Virasoro integrable model Lie symmetry invariant solutions
下载PDF
Higher-order rogue waves with controllable fission and asymmetry localized in a(3+1)-dimensional generalized Boussinesq equation
8
作者 Sheng Zhang Ying Li 《Communications in Theoretical Physics》 SCIE CAS CSCD 2023年第1期21-38,共18页
The purpose of this paper is to report the feasibility of constructing high-order rogue waves with controllable fission and asymmetry for high-dimensional nonlinear evolution equations.Such a nonlinear model considere... The purpose of this paper is to report the feasibility of constructing high-order rogue waves with controllable fission and asymmetry for high-dimensional nonlinear evolution equations.Such a nonlinear model considered in this paper as the concrete example is the(3+1)-dimensional generalized Boussinesq(gB)equation,and the corresponding method is Zhaqilao’s symbolic computation approach containing two embedded parameters.It is indicated by the(3+1)-dimensional gB equation that the embedded parameters can not only control the center of the first-order rogue wave,but also control the number of the wave peaks split from higher-order rogue waves and the asymmetry of higher-order rogue waves about the coordinate axes.The main novelty of this paper is that the obtained results and findings can provide useful supplements to the method used and the controllability of higher-order rogue waves. 展开更多
关键词 higher-order rogue wave controllable fission and asymmetry symbolic computation approach (3+1)-dimensional gB equation
原文传递
Residual symmetry, CRE integrability and interaction solutions of two higher-dimensional shallow water wave equations
9
作者 刘希忠 李界通 俞军 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期313-319,共7页
Two(3+1)-dimensional shallow water wave equations are studied by using residual symmetry and the consistent Riccati expansion(CRE) method. Through localization of residual symmetries, symmetry reduction solutions of t... Two(3+1)-dimensional shallow water wave equations are studied by using residual symmetry and the consistent Riccati expansion(CRE) method. Through localization of residual symmetries, symmetry reduction solutions of the two equations are obtained. The CRE method is applied to the two equations to obtain new B?cklund transformations from which a type of interesting interaction solution between solitons and periodic waves is generated. 展开更多
关键词 (3+1)-dimensional shallow water wave equation residual symmetry consistent Riccati expansion
下载PDF
Further investigations to extract abundant new exact traveling wave solutions of some NLEEs 被引量:3
10
作者 M.Mamun Miah Aly R.Seadawy +1 位作者 H.M.Shahadat Ali M.Ali Akbar 《Journal of Ocean Engineering and Science》 SCIE 2019年第4期387-394,共8页
In this study,we implement the generalized(G/G)-expansion method established by Wang et al.to examine wave solutions to some nonlinear evolution equations.The method,known as the double(G/G,1/G)-expansion method is ... In this study,we implement the generalized(G/G)-expansion method established by Wang et al.to examine wave solutions to some nonlinear evolution equations.The method,known as the double(G/G,1/G)-expansion method is used to establish abundant new and further general exact wave solutions to the(3+1)-dimensional Jimbo-Miwa equation,the(3+1)-dimensional Kadomtsev-Petviashvili equation and symmetric regularized long wave equation.The solutions are extracted in terms of hyperbolic function,trigonometric function and rational function.The solitary wave solutions are constructed from the obtained traveling wave solutions if the parameters received some definite values.Graphs of the solutions are also depicted to describe the phenomena apparently and the shapes of the obtained solutions are singular periodic,anti-kink,singular soliton,singular anti-bell shape,compaction etc.This method is straightforward,compact and reliable and gives huge new closed form traveling wave solutions of nonlinear evolution equations in ocean engineering. 展开更多
关键词 Exact traveling wave solutions (G/G 1/G)-expansion method (3+1)-dimensional Jimbo-Miwa equation (3+1)-dimensional Kadomtsev-Petviashvili equation Symmetric regularized long wave equation
原文传递
The exp<span style="font-family:Symbol;font-size:11pt;">(-j(x))</span>Method and Its Applications for Solving Some Nonlinear Evolution Equations in Mathematical Physics 被引量:2
11
作者 Maha S. M. Shehata 《American Journal of Computational Mathematics》 2015年第4期468-480,共13页
The ?exp(-j(x))?method is employed to find the exact traveling wave solutions involving parameters for nonlinear evolution equations. When these parameters are taken to be special values, the solitary wave solutions a... The ?exp(-j(x))?method is employed to find the exact traveling wave solutions involving parameters for nonlinear evolution equations. When these parameters are taken to be special values, the solitary wave solutions are derived from the exact traveling wave solutions. It is shown that the ?exp(-j(x))??method provides an effective and a more powerful mathematical tool for solving nonlinear evolution equations in mathematical physics. Comparison between our results and the well-known results will be presented. 展开更多
关键词 The exp(-j(x)) METHOD (2+1)-dimensional Soliton Breaking Equation (3+1)-dimensional
下载PDF
Some Special Types of Solitary Wave Solutions for (3+1)-Dimensional Jimbo-MiwaEquation 被引量:3
12
作者 BAICheng-Lin ZHAOHong 《Communications in Theoretical Physics》 SCIE CAS CSCD 2004年第6期875-877,共3页
Using the extended homogeneous balance method, we find some special types of single solitary wave solution and new types of the multisoliton solutions of the (3+1)-dimensional Jimbo-Miwa equation.
关键词 (3+1)-dimensional Jimbo-Miwa equation extended homogeneous balance method soliton solutions
下载PDF
A Generalized Variable-Coefficient Algebraic Method Exactly Solving (3+1)-Dimensional Kadomtsev-Petviashvilli Equation 被引量:3
13
作者 BAI Cheng-Lin BAI Cheng-Jie ZHAO Hong 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第5X期821-826,共6页
A generalized variable-coefficient algebraic method is appfied to construct several new families of exact solutions of physical interest for (3+1)-dimensional Kadomtsev-Petviashvilli (KP) equation. Among them, th... A generalized variable-coefficient algebraic method is appfied to construct several new families of exact solutions of physical interest for (3+1)-dimensional Kadomtsev-Petviashvilli (KP) equation. Among them, the Jacobi elliptic periodic solutions exactly degenerate to the soliton solutions at a certain limit condition. Compared with the existing tanh method, the extended tanh method, the Jacobi elliptic function method, and the algebraic method, the proposed method gives new and more general solutions. 展开更多
关键词 generalized variable-coefficient algebraic method 3+1)-dimensional KP equation exact explicit solutions
下载PDF
On the Quasi-Periodic Wave Solutions and Asymptotic Analysis to a(3+1)-Dimensional Generalized Kadomtsev–Petviashvili Equation 被引量:2
14
作者 田守富 马潘丽 《Communications in Theoretical Physics》 SCIE CAS CSCD 2014年第8期245-258,共14页
In this paper, a(3+1)-dimensional generalized Kadomtsev–Petviashvili(GKP) equation is investigated,which can be used to describe many nonlinear phenomena in fluid dynamics and plasma physics. Based on the generalized... In this paper, a(3+1)-dimensional generalized Kadomtsev–Petviashvili(GKP) equation is investigated,which can be used to describe many nonlinear phenomena in fluid dynamics and plasma physics. Based on the generalized Bell's polynomials, we succinctly construct the Hirota's bilinear equation to the GKP equation. By virtue of multidimensional Riemann theta functions, a lucid and straightforward way is presented to explicitly construct multiperiodic Riemann theta function periodic waves(quasi-periodic waves) for the(3+1)-dimensional GKP equation. Interestingly,the one-periodic waves are well-known cnoidal waves, which are considered as one-dimensional models of periodic waves.The two-periodic waves are a direct generalization of one-periodic waves, their surface pattern is two-dimensional that they have two independent spatial periods in two independent horizontal directions. Finally, we analyze asymptotic behavior of the multiperiodic periodic waves, and rigorously present the relationships between the periodic waves and soliton solutions by a limiting procedure. 展开更多
关键词 a(3+1)-dimensional GENERALIZED Kadomtsev–Petviashvili equation Bell’s polynomials Riemann theta function soliton SOLUTION periodic wave SOLUTION
原文传递
New Generalized Transformation Method and Its Application in Higher-Dimensional Soliton Equation 被引量:2
15
作者 BAI Cheng-Lin GUO Zong-Lin ZHAO Hong 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第3期447-451,共5页
A new generalized transformation method is differential equation. As an application of the method, we presented to find more exact solutions of nonlinear partial choose the (3+1)-dimensional breaking soliton equati... A new generalized transformation method is differential equation. As an application of the method, we presented to find more exact solutions of nonlinear partial choose the (3+1)-dimensional breaking soliton equation to illustrate the method. As a result many types of explicit and exact traveling wave solutions, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic function solutions, and rational solutions, are obtained. The new method can be extended to other nonlinear partial differential equations in mathematical physics. 展开更多
关键词 new generalized transformation method exact solution 3+1)-dimensional breaking soliton equation KdV equation mKdV equation cubic nonlinear Klein-Gordon equation
下载PDF
Painleve Analysis and Determinant Solutions of a (3+1)-Dimensional Variable-Coefficient Kadomtsev-Petviashvili Equation in Wronskian and Grammian Form 被引量:2
16
作者 MENG Xiang-Hua TIAN Bo +2 位作者 FENG Qian YAO Zhen-Zhi GAO Yi-Tian 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第6期1062-1068,共7页
In this paper, the investigation is focused on a (3+1)-dimensional variable-coefficient Kadomtsev- Petviashvili (vcKP) equation, which can describe the realistic nonlinear phenomena in the fluid dynamics and plas... In this paper, the investigation is focused on a (3+1)-dimensional variable-coefficient Kadomtsev- Petviashvili (vcKP) equation, which can describe the realistic nonlinear phenomena in the fluid dynamics and plasma in three spatial dimensions. In order to study the integrability property of such an equation, the Painlevé analysis is performed on it. And then, based on the truncated Painlevé expansion, the bilinear form of the (3+1)-dimensionaJ vcKP equation is obtained under certain coefficients constraint, and its solution in the Wronskian determinant form is constructed and verified by virtue of the Wronskian technique. Besides the Wronskian determinant solution, it is shown that the (3+1)-dimensional vcKP equation also possesses a solution in the form of the Grammian determinant. 展开更多
关键词 3+1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation Painlev@ analysis bilinear form Wronskian determinant Grammian determinant symbolic computation
下载PDF
Multiple exp-function method for soliton solutions of nonlinear evolution equations
17
作者 Yakup Yιldιrιm Emrullah Yasar 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第7期20-26,共7页
We applied the multiple exp-function scheme to the(2+1)-dimensional Sawada-Kotera(SK) equation and(3+1)-dimensional nonlinear evolution equation and analytic particular solutions have been deduced. The analyti... We applied the multiple exp-function scheme to the(2+1)-dimensional Sawada-Kotera(SK) equation and(3+1)-dimensional nonlinear evolution equation and analytic particular solutions have been deduced. The analytic particular solutions contain one-soliton, two-soliton, and three-soliton type solutions. With the assistance of Maple, we demonstrated the efficiency and advantages of the procedure that generalizes Hirota's perturbation scheme. The obtained solutions can be used as a benchmark for numerical solutions and describe the physical phenomena behind the model. 展开更多
关键词 (2+1)-dimensional Sawada-Kotera(SK) equation 3+1)-dimensional nonlinear evolution equation(NLEE) multiple exp-function method multiple wave solutions
下载PDF
Resonant multiple wave solutions to some integrable soliton equations
18
作者 Jian-Gen Liu Xiao-Jun Yang Yi-Ying Feng 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第11期92-98,共7页
To transform the exponential traveling wave solutions to bilinear differential equations, a sufficient and necessary condition is proposed. Motivated by the condition, we extend the results to the(2+1)-dimensional Kad... To transform the exponential traveling wave solutions to bilinear differential equations, a sufficient and necessary condition is proposed. Motivated by the condition, we extend the results to the(2+1)-dimensional Kadomtsev–Petviashvili(KP) equation, the(3+1)-dimensional generalized Kadomtsev–Petviashvili(g-KP) equation, and the B-type Kadomtsev–Petviashvili(BKP) equation. Aa a result, we obtain some new resonant multiple wave solutions through the parameterization for wave numbers and frequencies via some linear combinations of exponential traveling waves. Finally, these new resonant type solutions can be displayed in graphs to illustrate the resonant behaviors of multiple wave solutions. 展开更多
关键词 linear superposition principle RESONANT MULTIPLE wave solutions (2+1)-dimensional Kadomtsev–Petviashvili(KP) equation (3+1)-dimensional g-KP and BKP equations
下载PDF
Interactions among special embed-solitons for the (3+1)-dimensional Burgers equation 被引量:1
19
作者 张雯婷 戴朝卿 陈未路 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第4期196-199,共4页
With the help of a modified mapping method and a new mapping method, we re-study the (3+1)-dimensional Burgers equation, and derive two families of variable separation solutions. By selecting appropriate functions ... With the help of a modified mapping method and a new mapping method, we re-study the (3+1)-dimensional Burgers equation, and derive two families of variable separation solutions. By selecting appropriate functions in the variable separation solution, we discuss the interaction behaviors among taper-like, plateau-type rings, and rectangle-type embed-solitons in the periodic wave background. All the interaction behaviors are completely elastic, and no phase shift appears after interaction. 展开更多
关键词 3+1)-dimensional Burgers equation modified mapping method interaction between special embed-solitons
下载PDF
Applications of Extended Mapping Deformation Method in Two (3+1)-Dimensional Nonlinear Models 被引量:1
20
作者 HUANGWen-Hua ZHANGJie-Fang GEWei-Kuan 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第5期775-780,共6页
Based on the extended mapping deformation method and symbolic computation, many exact travelling wave solutions are found for the (3+1)-dimensional JM equation and the (3+1)-dimensional KP equation. The obtained solut... Based on the extended mapping deformation method and symbolic computation, many exact travelling wave solutions are found for the (3+1)-dimensional JM equation and the (3+1)-dimensional KP equation. The obtained solutions include solitary solution, periodic wave solution, rational travelling wave solution, and Jacobian and Weierstrass function solution, etc. 展开更多
关键词 (3+1)-dimensional JM equation (3+1)-dimensional KP equation travelling wavesolution
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部