Using elementary integral method, a complete classification of all possible exact traveling wave solutions to (3+1)-dimensional Nizhnok-Novikov-Veselov equation is given. Some solutions are new.
Using the modified find some new exact solutions to Lie point symmetry groups and also get conservation laws, of the CK's direct method, we build the relationship between new solutions and old ones and the (3+1)-d...Using the modified find some new exact solutions to Lie point symmetry groups and also get conservation laws, of the CK's direct method, we build the relationship between new solutions and old ones and the (3+1)-dimensional potentiaial-YTSF equation. Baaed on the invariant group theory, Lie symmetries of the (3+1)-dimensional potential-YTSF equation are obtained. We equation with the given Lie symmetry.展开更多
Exact solutions to conformable time fractional (3+1)-dimensional equations are derived by using the modified form of the Kudryashov method. The compatible wave transformation reduces the equations to an ODE with integ...Exact solutions to conformable time fractional (3+1)-dimensional equations are derived by using the modified form of the Kudryashov method. The compatible wave transformation reduces the equations to an ODE with integer orders. The predicted solution of the finite series of a rational exponential function is substituted into this ODE.The resultant polynomial equation is solved by using algebraic operations. The method works for the Jimbo–Miwa, the Zakharov–Kuznetsov, and the modified Zakharov–Kuznetsov equations in conformable time fractional forms. All the solutions are expressed in explicit forms.展开更多
In this article,the(1/G')-expansion method,the Bernoulli sub-ordinary differential equation method and the modified Kudryashov method are implemented to construct a variety of novel analytical solutions to the(3+1...In this article,the(1/G')-expansion method,the Bernoulli sub-ordinary differential equation method and the modified Kudryashov method are implemented to construct a variety of novel analytical solutions to the(3+1)-dimensional Boiti-Leon-Manna-Pempinelli model representing the wave propagation through incompressible fluids.The linearization of the wave structure in shallow water necessitates more critical wave capacity conditions than it does in deep water,and the strong nonlinear properties are perceptible.Some novel travelling wave solutions have been observed including solitons,kink,periodic and rational solutions with the aid of the latest computing tools such as Mathematica or Maple.The physical and analytical properties of several families of closed-form solutions or exact solutions and rational form function solutions to the(3+1)-dimensional Boiti-Leon-Manna-Pempinelli model problem are examined using Mathematica.展开更多
Based on the Pfaffian derivative formulae,a Grammian determinant solution for a(3+1)-dimensionalsoliton equation is obtained.Moreover,the Pfaffianization procedure is applied for the equation to generate a newcoupled ...Based on the Pfaffian derivative formulae,a Grammian determinant solution for a(3+1)-dimensionalsoliton equation is obtained.Moreover,the Pfaffianization procedure is applied for the equation to generate a newcoupled system.At last,a Gram-type Pfaffian solution to the new coupled system is given.展开更多
This article considers time-dependent variable coefficients(2+1)and(3+1)-dimensional extended Sakovich equation.Painlevéanalysis and auto-Bäcklund transformation methods are used to examine both the consider...This article considers time-dependent variable coefficients(2+1)and(3+1)-dimensional extended Sakovich equation.Painlevéanalysis and auto-Bäcklund transformation methods are used to examine both the considered equations.Painlevéanalysis is appeared to test the integrability while an auto-Bäcklund transformation method is being presented to derive new analytic soliton solution families for both the considered equations.Two new family of exact analytical solutions are being obtained success-fully for each of the considered equations.The soliton solutions in the form of rational and exponential functions are being depicted.The results are also expressed graphically to illustrate the potential and physical behaviour of both equations.Both the considered equations have applications in ocean wave theory as they depict new solitary wave soliton solutions by 3D and 2D graphs.展开更多
Lie symmetry analysis is applied to a(3+1)-dimensional Virasoro integrable model and the corresponding similarity reduction equations are obtained with the different infinitesimal generators.Invariant solutions with a...Lie symmetry analysis is applied to a(3+1)-dimensional Virasoro integrable model and the corresponding similarity reduction equations are obtained with the different infinitesimal generators.Invariant solutions with arbitrary functions for the(3+1)-dimensional Virasoro integrable model,including the interaction solution between a kink and a soliton,the lump-type solution and periodic solutions,have been studied analytically and graphically.展开更多
The purpose of this paper is to report the feasibility of constructing high-order rogue waves with controllable fission and asymmetry for high-dimensional nonlinear evolution equations.Such a nonlinear model considere...The purpose of this paper is to report the feasibility of constructing high-order rogue waves with controllable fission and asymmetry for high-dimensional nonlinear evolution equations.Such a nonlinear model considered in this paper as the concrete example is the(3+1)-dimensional generalized Boussinesq(gB)equation,and the corresponding method is Zhaqilao’s symbolic computation approach containing two embedded parameters.It is indicated by the(3+1)-dimensional gB equation that the embedded parameters can not only control the center of the first-order rogue wave,but also control the number of the wave peaks split from higher-order rogue waves and the asymmetry of higher-order rogue waves about the coordinate axes.The main novelty of this paper is that the obtained results and findings can provide useful supplements to the method used and the controllability of higher-order rogue waves.展开更多
Two(3+1)-dimensional shallow water wave equations are studied by using residual symmetry and the consistent Riccati expansion(CRE) method. Through localization of residual symmetries, symmetry reduction solutions of t...Two(3+1)-dimensional shallow water wave equations are studied by using residual symmetry and the consistent Riccati expansion(CRE) method. Through localization of residual symmetries, symmetry reduction solutions of the two equations are obtained. The CRE method is applied to the two equations to obtain new B?cklund transformations from which a type of interesting interaction solution between solitons and periodic waves is generated.展开更多
In this study,we implement the generalized(G/G)-expansion method established by Wang et al.to examine wave solutions to some nonlinear evolution equations.The method,known as the double(G/G,1/G)-expansion method is ...In this study,we implement the generalized(G/G)-expansion method established by Wang et al.to examine wave solutions to some nonlinear evolution equations.The method,known as the double(G/G,1/G)-expansion method is used to establish abundant new and further general exact wave solutions to the(3+1)-dimensional Jimbo-Miwa equation,the(3+1)-dimensional Kadomtsev-Petviashvili equation and symmetric regularized long wave equation.The solutions are extracted in terms of hyperbolic function,trigonometric function and rational function.The solitary wave solutions are constructed from the obtained traveling wave solutions if the parameters received some definite values.Graphs of the solutions are also depicted to describe the phenomena apparently and the shapes of the obtained solutions are singular periodic,anti-kink,singular soliton,singular anti-bell shape,compaction etc.This method is straightforward,compact and reliable and gives huge new closed form traveling wave solutions of nonlinear evolution equations in ocean engineering.展开更多
The ?exp(-j(x))?method is employed to find the exact traveling wave solutions involving parameters for nonlinear evolution equations. When these parameters are taken to be special values, the solitary wave solutions a...The ?exp(-j(x))?method is employed to find the exact traveling wave solutions involving parameters for nonlinear evolution equations. When these parameters are taken to be special values, the solitary wave solutions are derived from the exact traveling wave solutions. It is shown that the ?exp(-j(x))??method provides an effective and a more powerful mathematical tool for solving nonlinear evolution equations in mathematical physics. Comparison between our results and the well-known results will be presented.展开更多
Using the extended homogeneous balance method, we find some special types of single solitary wave solution and new types of the multisoliton solutions of the (3+1)-dimensional Jimbo-Miwa equation.
A generalized variable-coefficient algebraic method is appfied to construct several new families of exact solutions of physical interest for (3+1)-dimensional Kadomtsev-Petviashvilli (KP) equation. Among them, th...A generalized variable-coefficient algebraic method is appfied to construct several new families of exact solutions of physical interest for (3+1)-dimensional Kadomtsev-Petviashvilli (KP) equation. Among them, the Jacobi elliptic periodic solutions exactly degenerate to the soliton solutions at a certain limit condition. Compared with the existing tanh method, the extended tanh method, the Jacobi elliptic function method, and the algebraic method, the proposed method gives new and more general solutions.展开更多
In this paper, a(3+1)-dimensional generalized Kadomtsev–Petviashvili(GKP) equation is investigated,which can be used to describe many nonlinear phenomena in fluid dynamics and plasma physics. Based on the generalized...In this paper, a(3+1)-dimensional generalized Kadomtsev–Petviashvili(GKP) equation is investigated,which can be used to describe many nonlinear phenomena in fluid dynamics and plasma physics. Based on the generalized Bell's polynomials, we succinctly construct the Hirota's bilinear equation to the GKP equation. By virtue of multidimensional Riemann theta functions, a lucid and straightforward way is presented to explicitly construct multiperiodic Riemann theta function periodic waves(quasi-periodic waves) for the(3+1)-dimensional GKP equation. Interestingly,the one-periodic waves are well-known cnoidal waves, which are considered as one-dimensional models of periodic waves.The two-periodic waves are a direct generalization of one-periodic waves, their surface pattern is two-dimensional that they have two independent spatial periods in two independent horizontal directions. Finally, we analyze asymptotic behavior of the multiperiodic periodic waves, and rigorously present the relationships between the periodic waves and soliton solutions by a limiting procedure.展开更多
A new generalized transformation method is differential equation. As an application of the method, we presented to find more exact solutions of nonlinear partial choose the (3+1)-dimensional breaking soliton equati...A new generalized transformation method is differential equation. As an application of the method, we presented to find more exact solutions of nonlinear partial choose the (3+1)-dimensional breaking soliton equation to illustrate the method. As a result many types of explicit and exact traveling wave solutions, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic function solutions, and rational solutions, are obtained. The new method can be extended to other nonlinear partial differential equations in mathematical physics.展开更多
In this paper, the investigation is focused on a (3+1)-dimensional variable-coefficient Kadomtsev- Petviashvili (vcKP) equation, which can describe the realistic nonlinear phenomena in the fluid dynamics and plas...In this paper, the investigation is focused on a (3+1)-dimensional variable-coefficient Kadomtsev- Petviashvili (vcKP) equation, which can describe the realistic nonlinear phenomena in the fluid dynamics and plasma in three spatial dimensions. In order to study the integrability property of such an equation, the Painlevé analysis is performed on it. And then, based on the truncated Painlevé expansion, the bilinear form of the (3+1)-dimensionaJ vcKP equation is obtained under certain coefficients constraint, and its solution in the Wronskian determinant form is constructed and verified by virtue of the Wronskian technique. Besides the Wronskian determinant solution, it is shown that the (3+1)-dimensional vcKP equation also possesses a solution in the form of the Grammian determinant.展开更多
We applied the multiple exp-function scheme to the(2+1)-dimensional Sawada-Kotera(SK) equation and(3+1)-dimensional nonlinear evolution equation and analytic particular solutions have been deduced. The analyti...We applied the multiple exp-function scheme to the(2+1)-dimensional Sawada-Kotera(SK) equation and(3+1)-dimensional nonlinear evolution equation and analytic particular solutions have been deduced. The analytic particular solutions contain one-soliton, two-soliton, and three-soliton type solutions. With the assistance of Maple, we demonstrated the efficiency and advantages of the procedure that generalizes Hirota's perturbation scheme. The obtained solutions can be used as a benchmark for numerical solutions and describe the physical phenomena behind the model.展开更多
To transform the exponential traveling wave solutions to bilinear differential equations, a sufficient and necessary condition is proposed. Motivated by the condition, we extend the results to the(2+1)-dimensional Kad...To transform the exponential traveling wave solutions to bilinear differential equations, a sufficient and necessary condition is proposed. Motivated by the condition, we extend the results to the(2+1)-dimensional Kadomtsev–Petviashvili(KP) equation, the(3+1)-dimensional generalized Kadomtsev–Petviashvili(g-KP) equation, and the B-type Kadomtsev–Petviashvili(BKP) equation. Aa a result, we obtain some new resonant multiple wave solutions through the parameterization for wave numbers and frequencies via some linear combinations of exponential traveling waves. Finally, these new resonant type solutions can be displayed in graphs to illustrate the resonant behaviors of multiple wave solutions.展开更多
With the help of a modified mapping method and a new mapping method, we re-study the (3+1)-dimensional Burgers equation, and derive two families of variable separation solutions. By selecting appropriate functions ...With the help of a modified mapping method and a new mapping method, we re-study the (3+1)-dimensional Burgers equation, and derive two families of variable separation solutions. By selecting appropriate functions in the variable separation solution, we discuss the interaction behaviors among taper-like, plateau-type rings, and rectangle-type embed-solitons in the periodic wave background. All the interaction behaviors are completely elastic, and no phase shift appears after interaction.展开更多
Based on the extended mapping deformation method and symbolic computation, many exact travelling wave solutions are found for the (3+1)-dimensional JM equation and the (3+1)-dimensional KP equation. The obtained solut...Based on the extended mapping deformation method and symbolic computation, many exact travelling wave solutions are found for the (3+1)-dimensional JM equation and the (3+1)-dimensional KP equation. The obtained solutions include solitary solution, periodic wave solution, rational travelling wave solution, and Jacobian and Weierstrass function solution, etc.展开更多
基金The project supported by Scientific Research Fund of Heilongjiang Province of China under Grant No. 11511008The author would like to thank referees for their valuable suggestions.
文摘Using elementary integral method, a complete classification of all possible exact traveling wave solutions to (3+1)-dimensional Nizhnok-Novikov-Veselov equation is given. Some solutions are new.
基金The project supported by the Natural Science Foundation of Shandong Province of China under Grant No. 2004zx16 tCorresponding author, E-maih zzlh100@163.com
文摘Using the modified find some new exact solutions to Lie point symmetry groups and also get conservation laws, of the CK's direct method, we build the relationship between new solutions and old ones and the (3+1)-dimensional potentiaial-YTSF equation. Baaed on the invariant group theory, Lie symmetries of the (3+1)-dimensional potential-YTSF equation are obtained. We equation with the given Lie symmetry.
文摘Exact solutions to conformable time fractional (3+1)-dimensional equations are derived by using the modified form of the Kudryashov method. The compatible wave transformation reduces the equations to an ODE with integer orders. The predicted solution of the finite series of a rational exponential function is substituted into this ODE.The resultant polynomial equation is solved by using algebraic operations. The method works for the Jimbo–Miwa, the Zakharov–Kuznetsov, and the modified Zakharov–Kuznetsov equations in conformable time fractional forms. All the solutions are expressed in explicit forms.
文摘In this article,the(1/G')-expansion method,the Bernoulli sub-ordinary differential equation method and the modified Kudryashov method are implemented to construct a variety of novel analytical solutions to the(3+1)-dimensional Boiti-Leon-Manna-Pempinelli model representing the wave propagation through incompressible fluids.The linearization of the wave structure in shallow water necessitates more critical wave capacity conditions than it does in deep water,and the strong nonlinear properties are perceptible.Some novel travelling wave solutions have been observed including solitons,kink,periodic and rational solutions with the aid of the latest computing tools such as Mathematica or Maple.The physical and analytical properties of several families of closed-form solutions or exact solutions and rational form function solutions to the(3+1)-dimensional Boiti-Leon-Manna-Pempinelli model problem are examined using Mathematica.
文摘Based on the Pfaffian derivative formulae,a Grammian determinant solution for a(3+1)-dimensionalsoliton equation is obtained.Moreover,the Pfaffianization procedure is applied for the equation to generate a newcoupled system.At last,a Gram-type Pfaffian solution to the new coupled system is given.
文摘This article considers time-dependent variable coefficients(2+1)and(3+1)-dimensional extended Sakovich equation.Painlevéanalysis and auto-Bäcklund transformation methods are used to examine both the considered equations.Painlevéanalysis is appeared to test the integrability while an auto-Bäcklund transformation method is being presented to derive new analytic soliton solution families for both the considered equations.Two new family of exact analytical solutions are being obtained success-fully for each of the considered equations.The soliton solutions in the form of rational and exponential functions are being depicted.The results are also expressed graphically to illustrate the potential and physical behaviour of both equations.Both the considered equations have applications in ocean wave theory as they depict new solitary wave soliton solutions by 3D and 2D graphs.
文摘Lie symmetry analysis is applied to a(3+1)-dimensional Virasoro integrable model and the corresponding similarity reduction equations are obtained with the different infinitesimal generators.Invariant solutions with arbitrary functions for the(3+1)-dimensional Virasoro integrable model,including the interaction solution between a kink and a soliton,the lump-type solution and periodic solutions,have been studied analytically and graphically.
基金supported by Liaoning Bai Qian Wan Talents Program of China(LRS2020[78])the Natural Science Foundation of Education Department of Liaoning Province of China(LJ2020002)the National Natural Science Foundation of China(11547005)
文摘The purpose of this paper is to report the feasibility of constructing high-order rogue waves with controllable fission and asymmetry for high-dimensional nonlinear evolution equations.Such a nonlinear model considered in this paper as the concrete example is the(3+1)-dimensional generalized Boussinesq(gB)equation,and the corresponding method is Zhaqilao’s symbolic computation approach containing two embedded parameters.It is indicated by the(3+1)-dimensional gB equation that the embedded parameters can not only control the center of the first-order rogue wave,but also control the number of the wave peaks split from higher-order rogue waves and the asymmetry of higher-order rogue waves about the coordinate axes.The main novelty of this paper is that the obtained results and findings can provide useful supplements to the method used and the controllability of higher-order rogue waves.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11975156 and 12175148)。
文摘Two(3+1)-dimensional shallow water wave equations are studied by using residual symmetry and the consistent Riccati expansion(CRE) method. Through localization of residual symmetries, symmetry reduction solutions of the two equations are obtained. The CRE method is applied to the two equations to obtain new B?cklund transformations from which a type of interesting interaction solution between solitons and periodic waves is generated.
文摘In this study,we implement the generalized(G/G)-expansion method established by Wang et al.to examine wave solutions to some nonlinear evolution equations.The method,known as the double(G/G,1/G)-expansion method is used to establish abundant new and further general exact wave solutions to the(3+1)-dimensional Jimbo-Miwa equation,the(3+1)-dimensional Kadomtsev-Petviashvili equation and symmetric regularized long wave equation.The solutions are extracted in terms of hyperbolic function,trigonometric function and rational function.The solitary wave solutions are constructed from the obtained traveling wave solutions if the parameters received some definite values.Graphs of the solutions are also depicted to describe the phenomena apparently and the shapes of the obtained solutions are singular periodic,anti-kink,singular soliton,singular anti-bell shape,compaction etc.This method is straightforward,compact and reliable and gives huge new closed form traveling wave solutions of nonlinear evolution equations in ocean engineering.
文摘The ?exp(-j(x))?method is employed to find the exact traveling wave solutions involving parameters for nonlinear evolution equations. When these parameters are taken to be special values, the solitary wave solutions are derived from the exact traveling wave solutions. It is shown that the ?exp(-j(x))??method provides an effective and a more powerful mathematical tool for solving nonlinear evolution equations in mathematical physics. Comparison between our results and the well-known results will be presented.
文摘Using the extended homogeneous balance method, we find some special types of single solitary wave solution and new types of the multisoliton solutions of the (3+1)-dimensional Jimbo-Miwa equation.
文摘A generalized variable-coefficient algebraic method is appfied to construct several new families of exact solutions of physical interest for (3+1)-dimensional Kadomtsev-Petviashvilli (KP) equation. Among them, the Jacobi elliptic periodic solutions exactly degenerate to the soliton solutions at a certain limit condition. Compared with the existing tanh method, the extended tanh method, the Jacobi elliptic function method, and the algebraic method, the proposed method gives new and more general solutions.
基金Supported by the Fundamental Research Funds for the Central Universities under Grant No.2013QNA41Natural Sciences Foundation of China under Grant Nos.11301527 and 11371361the Construction Project of the Key Discipline in Universities for 12th Five-year Plans by Jiangsu Province
文摘In this paper, a(3+1)-dimensional generalized Kadomtsev–Petviashvili(GKP) equation is investigated,which can be used to describe many nonlinear phenomena in fluid dynamics and plasma physics. Based on the generalized Bell's polynomials, we succinctly construct the Hirota's bilinear equation to the GKP equation. By virtue of multidimensional Riemann theta functions, a lucid and straightforward way is presented to explicitly construct multiperiodic Riemann theta function periodic waves(quasi-periodic waves) for the(3+1)-dimensional GKP equation. Interestingly,the one-periodic waves are well-known cnoidal waves, which are considered as one-dimensional models of periodic waves.The two-periodic waves are a direct generalization of one-periodic waves, their surface pattern is two-dimensional that they have two independent spatial periods in two independent horizontal directions. Finally, we analyze asymptotic behavior of the multiperiodic periodic waves, and rigorously present the relationships between the periodic waves and soliton solutions by a limiting procedure.
基金The project supported by National Natural Science Foundation of China and the Natural Science Foundation of Shandong Province of China
文摘A new generalized transformation method is differential equation. As an application of the method, we presented to find more exact solutions of nonlinear partial choose the (3+1)-dimensional breaking soliton equation to illustrate the method. As a result many types of explicit and exact traveling wave solutions, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic function solutions, and rational solutions, are obtained. The new method can be extended to other nonlinear partial differential equations in mathematical physics.
基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education under Grant Nos. 20060006024 and 20080013006Chinese Ministry of Education, by the National Natural Science Foundation of China under Grant No. 60772023+2 种基金by the Open Fund of the State Key Laboratory of Software Development Environment under Grant No. SKLSDE-07-001Beijing University of Aeronautics and Astronauticsby the National Basic Research Program of China (973 Program) under Grant No. 2005CB321901
文摘In this paper, the investigation is focused on a (3+1)-dimensional variable-coefficient Kadomtsev- Petviashvili (vcKP) equation, which can describe the realistic nonlinear phenomena in the fluid dynamics and plasma in three spatial dimensions. In order to study the integrability property of such an equation, the Painlevé analysis is performed on it. And then, based on the truncated Painlevé expansion, the bilinear form of the (3+1)-dimensionaJ vcKP equation is obtained under certain coefficients constraint, and its solution in the Wronskian determinant form is constructed and verified by virtue of the Wronskian technique. Besides the Wronskian determinant solution, it is shown that the (3+1)-dimensional vcKP equation also possesses a solution in the form of the Grammian determinant.
文摘We applied the multiple exp-function scheme to the(2+1)-dimensional Sawada-Kotera(SK) equation and(3+1)-dimensional nonlinear evolution equation and analytic particular solutions have been deduced. The analytic particular solutions contain one-soliton, two-soliton, and three-soliton type solutions. With the assistance of Maple, we demonstrated the efficiency and advantages of the procedure that generalizes Hirota's perturbation scheme. The obtained solutions can be used as a benchmark for numerical solutions and describe the physical phenomena behind the model.
基金Project supported by the Yue-Qi Scholar of the China University of Mining and Technology(Grant No.102504180004)the 333 Project of Jiangsu Province,China(Grant No.BRA2018320)
文摘To transform the exponential traveling wave solutions to bilinear differential equations, a sufficient and necessary condition is proposed. Motivated by the condition, we extend the results to the(2+1)-dimensional Kadomtsev–Petviashvili(KP) equation, the(3+1)-dimensional generalized Kadomtsev–Petviashvili(g-KP) equation, and the B-type Kadomtsev–Petviashvili(BKP) equation. Aa a result, we obtain some new resonant multiple wave solutions through the parameterization for wave numbers and frequencies via some linear combinations of exponential traveling waves. Finally, these new resonant type solutions can be displayed in graphs to illustrate the resonant behaviors of multiple wave solutions.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11005092)the Undergraduate Scientific and Technological Innovation Project of Zhejiang Province of China (Grant No. 2012R412018)the Undergraduate Innovative Base Program of Zhejiang A & F University
文摘With the help of a modified mapping method and a new mapping method, we re-study the (3+1)-dimensional Burgers equation, and derive two families of variable separation solutions. By selecting appropriate functions in the variable separation solution, we discuss the interaction behaviors among taper-like, plateau-type rings, and rectangle-type embed-solitons in the periodic wave background. All the interaction behaviors are completely elastic, and no phase shift appears after interaction.
文摘Based on the extended mapping deformation method and symbolic computation, many exact travelling wave solutions are found for the (3+1)-dimensional JM equation and the (3+1)-dimensional KP equation. The obtained solutions include solitary solution, periodic wave solution, rational travelling wave solution, and Jacobian and Weierstrass function solution, etc.