A new Baecklund transformation for (2+1)-dimensional KdV equation is first obtained by using homogeneous balance method. And making use of the Baecklund transformation and choosing a special seed solution, we get spe...A new Baecklund transformation for (2+1)-dimensional KdV equation is first obtained by using homogeneous balance method. And making use of the Baecklund transformation and choosing a special seed solution, we get special types of solitary wave solutions. Finally a general variable separation solution containing two arbitrary functions is constructed, from which abundant localized coherent structures of the equation in question can be induced.展开更多
Variable separation approach is introduced to solve the (2+1)-dimensional KdV equation. A series of variable separation solutions is derived with arbitrary functions in system. We present a new soliton excitation m...Variable separation approach is introduced to solve the (2+1)-dimensional KdV equation. A series of variable separation solutions is derived with arbitrary functions in system. We present a new soliton excitation model (24). Based on this excitation, new soliton structures such as the multi-lump soliton and periodic soliton are revealed by selecting the arbitrary function appropriately.展开更多
文摘A new Baecklund transformation for (2+1)-dimensional KdV equation is first obtained by using homogeneous balance method. And making use of the Baecklund transformation and choosing a special seed solution, we get special types of solitary wave solutions. Finally a general variable separation solution containing two arbitrary functions is constructed, from which abundant localized coherent structures of the equation in question can be induced.
基金The author would like to thank Profs. Jie-Fang Zhang and Chun-Long Zheng for helpful discussions.
文摘Variable separation approach is introduced to solve the (2+1)-dimensional KdV equation. A series of variable separation solutions is derived with arbitrary functions in system. We present a new soliton excitation model (24). Based on this excitation, new soliton structures such as the multi-lump soliton and periodic soliton are revealed by selecting the arbitrary function appropriately.