With the aid of symbolic computation system Maple, many exact solutions for the (3+1)-dimensional KP equation are constructed by introducing an auxiliary equation and using its new Jacobi elliptic function solution...With the aid of symbolic computation system Maple, many exact solutions for the (3+1)-dimensional KP equation are constructed by introducing an auxiliary equation and using its new Jacobi elliptic function solutions, where the new solutions are also constructed. When the modulus m → 1 and m →0, these solutions reduce to the corresponding solitary evolution solutions and trigonometric function solutions.展开更多
Variable separation approach is introduced to solve the (2+1)-dimensional KdV equation. A series of variable separation solutions is derived with arbitrary functions in system. We present a new soliton excitation m...Variable separation approach is introduced to solve the (2+1)-dimensional KdV equation. A series of variable separation solutions is derived with arbitrary functions in system. We present a new soliton excitation model (24). Based on this excitation, new soliton structures such as the multi-lump soliton and periodic soliton are revealed by selecting the arbitrary function appropriately.展开更多
基金The project supported by the Scientific Research Foundation of Beijing Information Science and Technology University
文摘With the aid of symbolic computation system Maple, many exact solutions for the (3+1)-dimensional KP equation are constructed by introducing an auxiliary equation and using its new Jacobi elliptic function solutions, where the new solutions are also constructed. When the modulus m → 1 and m →0, these solutions reduce to the corresponding solitary evolution solutions and trigonometric function solutions.
基金The author would like to thank Profs. Jie-Fang Zhang and Chun-Long Zheng for helpful discussions.
文摘Variable separation approach is introduced to solve the (2+1)-dimensional KdV equation. A series of variable separation solutions is derived with arbitrary functions in system. We present a new soliton excitation model (24). Based on this excitation, new soliton structures such as the multi-lump soliton and periodic soliton are revealed by selecting the arbitrary function appropriately.
基金supported by National Natural Science Foundation of China(No.11371267 and 11571245)Basic Project of Sichuan Provincial Science and Technology Department(No.2016JY0204)~~