AIM: To investigate the effect of (-)-epigallocatechin-3-gallate (EGCG) on growth of gastric cancer and its possible mechanism. METHODS: Heterotopic tumors were induced by subcutaneously injection of SGC-7901 ce...AIM: To investigate the effect of (-)-epigallocatechin-3-gallate (EGCG) on growth of gastric cancer and its possible mechanism. METHODS: Heterotopic tumors were induced by subcutaneously injection of SGC-7901 cells in nude mice. Tumor growth was measured by calipers in two dimensions. Tumor angiogenesis was determined with tumor microvessel density (MVD) by immunohistology. Vascular endothelial growth factor (VEGF) protein level and activation of signal transducer and activator of transcription 3 (Star3) were examined by Western blotting. VEGF mRNA expression was determined by RT-PCR and VEGF release in tumor culture medium by ELISA. VEGF-induced cell proliferation was studied by MTT assay, cell migration by gelatin modified Boyden chamber (Transwell) and in vitro angiogenesis by endothelial tube formation in Matrigel. RESULTS: Intraperitoneal injection of EGCG inhibited the growth of gastric cancer by 60.4%. MVD in tumor tissues treated with EGCG was markedly reduced. EGCG treatment reduced VEGF protein level in vitro and in vivo. Secretion and mRNA expression of VEGF in tumor cells were also suppressed by EGCG in a dose-dependent manner. This inhibitory effect was associated with reduced activation of Star3, but EGCG treatment did not change the total Star3 expression. EGCG also inhibited VEGF-induced endothelial cell proliferation, migration and tube formation. CONCLUSION: EGCG inhibits the growth of gastric cancer by reducing VEGF production and angiogenesis, and is a promising candidate for anti-angiogenic treatment of gastric cancer.展开更多
AIM: To demonstrate that (-)-Epigallocatechin-3-gallate (EGCG) inhibits vascular endothelial growth factor (VEGF) expression and angiogenesis induced by interleukin-6 (IL-6) via suppressing signal transducer and activ...AIM: To demonstrate that (-)-Epigallocatechin-3-gallate (EGCG) inhibits vascular endothelial growth factor (VEGF) expression and angiogenesis induced by interleukin-6 (IL-6) via suppressing signal transducer and activator of transcription 3 (Stat3) activity in gastric cancer. METHODS: Human gastric cancer (AGS) cells were treated with IL-6 (50 ng/mL) and EGCG at different concentrations. VEGF, total Stat3 and activated Stat3 protein levels in the cell lyses were examined by Western blotting, VEGF protein level in the conditionedmedium was measured by enzyme-linked immunosorbent assay, and the level of VEGF mRNA was evaluated by reverse transcription polymerase chain reaction (RTPCR). Stat3 nuclear translocation was determined by Western blotting with nuclear extract, and Stat3-DNA binding activity was examined with Chromatin immunoprecipitation (ChIP) assay. IL-6 induced endothelial cell proliferation was measured with 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazoliumbromide assay, in vitro angiogenesis was determined with endothelial cell tube formation assay in Matrigel, and IL-6-induced angiogenesis in vitro was measured with Matrigel plug assay. RESULTS: There was a basal expression and secretion of VEGF in AGS cells. After stimulation with IL-6, VEGF expression was apparently up-regulated and a 2.4-fold increase was observed. VEGF secretion in the conditioned medium was also increased by 2.8 folds. When treated with EGCG, VEGF expression and secretion were dose-dependently decreased. IL-6 also increased VEGF mRNA expression by 3.1 folds. EGCG treatment suppressed VEGF mRNA expression in a dose-dependent manner. EGCG dose-dependently inhibited Stat3 activation induced by IL-6, but did not change the total Stat3 expression. When treated with EGCG or AG490, VEGF expressions were reduced to the level or an even lower level in the tumor cells not stimulated with IL-6. However, PD98059 and LY294002 did not change VEGF expression induced by IL-6. EGCG inhibited Stat3 nucleus translocation, and Stat3-DNA bindi展开更多
Background:Green tea has been shown to improve cholesterol metabolism in animal studies,but the molecular mechanisms underlying this function have not been fully understood.Long non-coding RNAs (lncRNAs) have recen...Background:Green tea has been shown to improve cholesterol metabolism in animal studies,but the molecular mechanisms underlying this function have not been fully understood.Long non-coding RNAs (lncRNAs) have recently emerged as a major class of regulatory molecules involved in a broad range of biological processes and complex diseases.Our aim was to identify important lncRNAs that might play an important role in contributing to the benefits of epigallocatechin-3-gallate (EGCG) on cholesterol metabolism.Methods:Microarrays was used to reveal the lncRNA and mRNA profiles in green tea polyphenol(-)-epigallocatechin gallate in cultured human liver (HepG2) hepatocytes treated with EGCG and bioinformatic analyses of the predicted target genes were performed to identify lncRNA-mRNA targeting relationships.RNA interference was used to investigate the role of lncRNAs in cholesterol metabolism.Results:The expression levels of 15 genes related to cholesterol metabolism and 285 lncRNAs were changed by EGCG treatment.Bioinformatic analysis found five matched lncRNA-mRNA pairs for five differentially expressed lncRNAs and four differentially expressed mRNA.In particular,the lncRNA4 T102202 and its potential targets mRNA-3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) were identified.Using a real-time polymerase chain reaction technique,we confirmed that EGCG down-regulated mRNA expression level of the HMGCR and up-regulated expression ofAT102202.After AT102202 knockdown in HepG2,we observed that the level of HMGCR expression was significantly increased relative to the scrambled small interfering RNA control (P 〈 0.05).Conclusions:Our results indicated that EGCG improved cholesterol metabolism and meanwhile changed the lncRNAs expression profile in HepG2 cells.LncRNAs may play an important role in the cholesterol metabolism.展开更多
Objective To investigate excretion profiles of the four major anti-oxidant active catechins, (-) epigallo-catechin-3-gallate (EGCG), (-) epicatechin-3-gallate (ECG), (-) epigallocatechin (EGC), and epicatechin (EC) in...Objective To investigate excretion profiles of the four major anti-oxidant active catechins, (-) epigallo-catechin-3-gallate (EGCG), (-) epicatechin-3-gallate (ECG), (-) epigallocatechin (EGC), and epicatechin (EC) in tea polyphenols (TP) in rats in order to provide experimental data for clinical uses and development of TP as a novel drug. Methods The above four catechins in urine, bile, and feces were simultaneously determined by high performance liquid chromatography coupled with ultraviolet absorption detector (HPLC-UV) assay with a binary gradient elution. The samples were extracted by ethyl acetate prior to HPLC. The quantification was carried out by peak area internal standard method. Following iv dosing TP 100 mg/kg to rats, the samples were collected at different time intervals up to 8 h (urine and bile) and 24 h (feces). Results The urinary Ae, 0-8 h (cumulative excretion amount over 8 h) of EGCG, ECG, EGC, and EC were, on the average, 150.83, 30.75, 116.69, and 254.56 μg, corresponding to fe, 0-8 h (cumulative excretion fraction of dose over 8 h) of 1.45%, 0.84%, 7.88%, and 10.73%, respectively; the biliary Ae, 0-8 h were 12.61, 42.64, 6.61, and 1.24 μg, corresponding to the fe, 0-8 h of 0.12%, 1.16%, 0.45%, and 0.053%,respectively. For fecal excretion, only EGCG and EGC were detected with Ae, 0-24 h of 7.38 μg (fe, 0-24 h of 0.07%) and 157 μg (fe, 0-24 h of 9.99 %), respectively. The fe, total (the total fe of 3 excretory routes) were 18.32%, 10.78%, 2.00%, and 1.64% for EGC, EC, ECG, and EGCG, respectively. Conclusion EGCG and EC are mainly excreted in urine, ECG in bile, and EGC in feces by reference to their Ae and fe. The excretion of the four catechins based on fe, total is ranked in order of EGC > EC > ECG > EGCG. Only small amount of four catechins are recovered in urine, bile, and feces, indicating an extensive metabolic conversion of catechins in the rat body.展开更多
AIM:To determine the effects of curcumin,(-)-epigallocatechin-3-gallate (EGCG),lovastatin,and their combinations on inhibition of esophageal cancer.METHODS:Esophageal cancer TE-8 and SKGT-4 cell lines were subjected t...AIM:To determine the effects of curcumin,(-)-epigallocatechin-3-gallate (EGCG),lovastatin,and their combinations on inhibition of esophageal cancer.METHODS:Esophageal cancer TE-8 and SKGT-4 cell lines were subjected to cell viability methyl thiazolyl tetrazolium and tumor cell invasion assays in vitro and tumor formation and growth in nude mouse xenografts with or without curcumin,EGCG and lovastatin treatment.Gene expression was detected using immunohistochemistry and Western blotting in tumor cell lines,tumor xenografts and human esophageal cancer tissues,respectively.RESULTS:These drugs individually or in combinations significantly reduced the viability and invasion capacity of esophageal cancer cells in vitro.Molecularly,these three agents reduced the expression of phosphorylated extracellular-signal-regulated kinases (Erk1/2),c-Jun and cyclooxygenase-2 (COX-2),but activated caspase 3 in esophageal cancer cells.The nude mouse xenograft assay showed that EGCG and the combinations of curcumin,EGCG and lovastatin suppressed esophageal cancer cell growth and reduced the expression of Ki67,phosphorylated Erk1/2 and COX-2.The expression of phosphorylated Erk1/2 and COX-2 in esophageal cancer tissue specimens was also analyzed using immunohistochemistry.The data demonstrated that 77 of 156 (49.4%) tumors expressed phosphorylated Erk1/2 and that 121 of 156 (77.6%) esophageal cancers expressed COX-2 protein.In particular,phosphorylated Erk1/2 was expressed in 23 of 50 (46%) cases of esophageal squamous cell carcinoma (SCC) and in 54 of 106 (50.9%) cases of adenocarcinoma,while COX-2 was expressed in 39 of 50 (78%) esophageal SCC and in 82 of 106 (77.4%) esophageal adenocarcinoma.CONCLUSION:The combinations of curcumin,EGCG and lovastatin were able to suppress esophageal cancer cell growth in vitro and in nude mouse xenografts,these drugs also inhibited phosphorylated Erk1/2,c-Jun and COX-2 expression.展开更多
基金Supported by the grants from the National Natural Science Foundation of China, No. 30571833the Natural Science Foundation of Guangdong Province, China, No. 05001785
文摘AIM: To investigate the effect of (-)-epigallocatechin-3-gallate (EGCG) on growth of gastric cancer and its possible mechanism. METHODS: Heterotopic tumors were induced by subcutaneously injection of SGC-7901 cells in nude mice. Tumor growth was measured by calipers in two dimensions. Tumor angiogenesis was determined with tumor microvessel density (MVD) by immunohistology. Vascular endothelial growth factor (VEGF) protein level and activation of signal transducer and activator of transcription 3 (Star3) were examined by Western blotting. VEGF mRNA expression was determined by RT-PCR and VEGF release in tumor culture medium by ELISA. VEGF-induced cell proliferation was studied by MTT assay, cell migration by gelatin modified Boyden chamber (Transwell) and in vitro angiogenesis by endothelial tube formation in Matrigel. RESULTS: Intraperitoneal injection of EGCG inhibited the growth of gastric cancer by 60.4%. MVD in tumor tissues treated with EGCG was markedly reduced. EGCG treatment reduced VEGF protein level in vitro and in vivo. Secretion and mRNA expression of VEGF in tumor cells were also suppressed by EGCG in a dose-dependent manner. This inhibitory effect was associated with reduced activation of Star3, but EGCG treatment did not change the total Star3 expression. EGCG also inhibited VEGF-induced endothelial cell proliferation, migration and tube formation. CONCLUSION: EGCG inhibits the growth of gastric cancer by reducing VEGF production and angiogenesis, and is a promising candidate for anti-angiogenic treatment of gastric cancer.
基金Supported by National Natural Science Foundation of China, Grant, No. 30571833Natural Science Foundation of Guangdong Province, 05001785China Postdoctoral Science Foundation 20100470963
文摘AIM: To demonstrate that (-)-Epigallocatechin-3-gallate (EGCG) inhibits vascular endothelial growth factor (VEGF) expression and angiogenesis induced by interleukin-6 (IL-6) via suppressing signal transducer and activator of transcription 3 (Stat3) activity in gastric cancer. METHODS: Human gastric cancer (AGS) cells were treated with IL-6 (50 ng/mL) and EGCG at different concentrations. VEGF, total Stat3 and activated Stat3 protein levels in the cell lyses were examined by Western blotting, VEGF protein level in the conditionedmedium was measured by enzyme-linked immunosorbent assay, and the level of VEGF mRNA was evaluated by reverse transcription polymerase chain reaction (RTPCR). Stat3 nuclear translocation was determined by Western blotting with nuclear extract, and Stat3-DNA binding activity was examined with Chromatin immunoprecipitation (ChIP) assay. IL-6 induced endothelial cell proliferation was measured with 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazoliumbromide assay, in vitro angiogenesis was determined with endothelial cell tube formation assay in Matrigel, and IL-6-induced angiogenesis in vitro was measured with Matrigel plug assay. RESULTS: There was a basal expression and secretion of VEGF in AGS cells. After stimulation with IL-6, VEGF expression was apparently up-regulated and a 2.4-fold increase was observed. VEGF secretion in the conditioned medium was also increased by 2.8 folds. When treated with EGCG, VEGF expression and secretion were dose-dependently decreased. IL-6 also increased VEGF mRNA expression by 3.1 folds. EGCG treatment suppressed VEGF mRNA expression in a dose-dependent manner. EGCG dose-dependently inhibited Stat3 activation induced by IL-6, but did not change the total Stat3 expression. When treated with EGCG or AG490, VEGF expressions were reduced to the level or an even lower level in the tumor cells not stimulated with IL-6. However, PD98059 and LY294002 did not change VEGF expression induced by IL-6. EGCG inhibited Stat3 nucleus translocation, and Stat3-DNA bindi
基金The present study was supported by a grant from the National Natural Science Foundation of China (No. 81241007).
文摘Background:Green tea has been shown to improve cholesterol metabolism in animal studies,but the molecular mechanisms underlying this function have not been fully understood.Long non-coding RNAs (lncRNAs) have recently emerged as a major class of regulatory molecules involved in a broad range of biological processes and complex diseases.Our aim was to identify important lncRNAs that might play an important role in contributing to the benefits of epigallocatechin-3-gallate (EGCG) on cholesterol metabolism.Methods:Microarrays was used to reveal the lncRNA and mRNA profiles in green tea polyphenol(-)-epigallocatechin gallate in cultured human liver (HepG2) hepatocytes treated with EGCG and bioinformatic analyses of the predicted target genes were performed to identify lncRNA-mRNA targeting relationships.RNA interference was used to investigate the role of lncRNAs in cholesterol metabolism.Results:The expression levels of 15 genes related to cholesterol metabolism and 285 lncRNAs were changed by EGCG treatment.Bioinformatic analysis found five matched lncRNA-mRNA pairs for five differentially expressed lncRNAs and four differentially expressed mRNA.In particular,the lncRNA4 T102202 and its potential targets mRNA-3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) were identified.Using a real-time polymerase chain reaction technique,we confirmed that EGCG down-regulated mRNA expression level of the HMGCR and up-regulated expression ofAT102202.After AT102202 knockdown in HepG2,we observed that the level of HMGCR expression was significantly increased relative to the scrambled small interfering RNA control (P 〈 0.05).Conclusions:Our results indicated that EGCG improved cholesterol metabolism and meanwhile changed the lncRNAs expression profile in HepG2 cells.LncRNAs may play an important role in the cholesterol metabolism.
基金support was provided by Dalian Municipal Fund of Science and Technology (2002B4NS044)Kangbosi Pharmaceutical Co. Ltd, China
文摘Objective To investigate excretion profiles of the four major anti-oxidant active catechins, (-) epigallo-catechin-3-gallate (EGCG), (-) epicatechin-3-gallate (ECG), (-) epigallocatechin (EGC), and epicatechin (EC) in tea polyphenols (TP) in rats in order to provide experimental data for clinical uses and development of TP as a novel drug. Methods The above four catechins in urine, bile, and feces were simultaneously determined by high performance liquid chromatography coupled with ultraviolet absorption detector (HPLC-UV) assay with a binary gradient elution. The samples were extracted by ethyl acetate prior to HPLC. The quantification was carried out by peak area internal standard method. Following iv dosing TP 100 mg/kg to rats, the samples were collected at different time intervals up to 8 h (urine and bile) and 24 h (feces). Results The urinary Ae, 0-8 h (cumulative excretion amount over 8 h) of EGCG, ECG, EGC, and EC were, on the average, 150.83, 30.75, 116.69, and 254.56 μg, corresponding to fe, 0-8 h (cumulative excretion fraction of dose over 8 h) of 1.45%, 0.84%, 7.88%, and 10.73%, respectively; the biliary Ae, 0-8 h were 12.61, 42.64, 6.61, and 1.24 μg, corresponding to the fe, 0-8 h of 0.12%, 1.16%, 0.45%, and 0.053%,respectively. For fecal excretion, only EGCG and EGC were detected with Ae, 0-24 h of 7.38 μg (fe, 0-24 h of 0.07%) and 157 μg (fe, 0-24 h of 9.99 %), respectively. The fe, total (the total fe of 3 excretory routes) were 18.32%, 10.78%, 2.00%, and 1.64% for EGC, EC, ECG, and EGCG, respectively. Conclusion EGCG and EC are mainly excreted in urine, ECG in bile, and EGC in feces by reference to their Ae and fe. The excretion of the four catechins based on fe, total is ranked in order of EGC > EC > ECG > EGCG. Only small amount of four catechins are recovered in urine, bile, and feces, indicating an extensive metabolic conversion of catechins in the rat body.
基金Supported by A United States National Cancer Institute Grant,No.R01CA117895a grant from the Duncan Family Institute for Cancer Prevention and Risk Assessment,UT MDAnderson Cancer Center
文摘AIM:To determine the effects of curcumin,(-)-epigallocatechin-3-gallate (EGCG),lovastatin,and their combinations on inhibition of esophageal cancer.METHODS:Esophageal cancer TE-8 and SKGT-4 cell lines were subjected to cell viability methyl thiazolyl tetrazolium and tumor cell invasion assays in vitro and tumor formation and growth in nude mouse xenografts with or without curcumin,EGCG and lovastatin treatment.Gene expression was detected using immunohistochemistry and Western blotting in tumor cell lines,tumor xenografts and human esophageal cancer tissues,respectively.RESULTS:These drugs individually or in combinations significantly reduced the viability and invasion capacity of esophageal cancer cells in vitro.Molecularly,these three agents reduced the expression of phosphorylated extracellular-signal-regulated kinases (Erk1/2),c-Jun and cyclooxygenase-2 (COX-2),but activated caspase 3 in esophageal cancer cells.The nude mouse xenograft assay showed that EGCG and the combinations of curcumin,EGCG and lovastatin suppressed esophageal cancer cell growth and reduced the expression of Ki67,phosphorylated Erk1/2 and COX-2.The expression of phosphorylated Erk1/2 and COX-2 in esophageal cancer tissue specimens was also analyzed using immunohistochemistry.The data demonstrated that 77 of 156 (49.4%) tumors expressed phosphorylated Erk1/2 and that 121 of 156 (77.6%) esophageal cancers expressed COX-2 protein.In particular,phosphorylated Erk1/2 was expressed in 23 of 50 (46%) cases of esophageal squamous cell carcinoma (SCC) and in 54 of 106 (50.9%) cases of adenocarcinoma,while COX-2 was expressed in 39 of 50 (78%) esophageal SCC and in 82 of 106 (77.4%) esophageal adenocarcinoma.CONCLUSION:The combinations of curcumin,EGCG and lovastatin were able to suppress esophageal cancer cell growth in vitro and in nude mouse xenografts,these drugs also inhibited phosphorylated Erk1/2,c-Jun and COX-2 expression.