The nitrogen (N) pollution status of the 12 most important rivers in Changshu, Taihu Lake region was investigated. Water samples were collected from depths of 0.5-1.0 m with the aid of the global positioning system ...The nitrogen (N) pollution status of the 12 most important rivers in Changshu, Taihu Lake region was investigated. Water samples were collected from depths of 0.5-1.0 m with the aid of the global positioning system (GPS). The seasonal variations in the concentrations of different N components in the rivers were measured. Using tension-free monolith lysimeters and ^15N-labeled fertilizer, field experiments were carried out in this region to determine variations of iSN abundance of NO3^- in the leachate during the rice and wheat growing seasons, respectively. Results showed that the main source of N pollution of surface waters in the Taihu Lake region was not the N fertilizer applied in the farmland but the urban domestic sewage and rural human and animal excreta directly discharged into the water bodies without treatment. Atmospheric dry and wet N deposition was another evident source of N pollutant of the surface waters. In conclusion, it would not be correct to attribute the N applied to farmlands as the source of N pollution of the surface waters in this region.展开更多
Wheat biomass can be estimated using appropriate spectral vegetation indices.However,the accuracy of estimation should be further improved for on-farm crop management.Previous studies focused on developing vegetation ...Wheat biomass can be estimated using appropriate spectral vegetation indices.However,the accuracy of estimation should be further improved for on-farm crop management.Previous studies focused on developing vegetation indices,however limited research exists on modeling algorithms.The emerging Random Forest(RF) machine-learning algorithm is regarded as one of the most precise prediction methods for regression modeling.The objectives of this study were to(1) investigate the applicability of the RF regression algorithm for remotely estimating wheat biomass,(2) test the performance of the RF regression model,and(3) compare the performance of the RF algorithm with support vector regression(SVR) and artificial neural network(ANN) machine-learning algorithms for wheat biomass estimation.Single HJ-CCD images of wheat from test sites in Jiangsu province were obtained during the jointing,booting,and anthesis stages of growth.Fifteen vegetation indices were calculated based on these images.In-situ wheat above-ground dry biomass was measured during the HJ-CCD data acquisition.The results showed that the RF model produced more accurate estimates of wheat biomass than the SVR and ANN models at each stage,and its robustness is as good as SVR but better than ANN.The RF algorithm provides a useful exploratory and predictive tool for estimating wheat biomass on a large scale in Southern China.展开更多
Shaheen Basma ti was evolved as a salt tolerant fine rice va riety by the Soil Salinity Research Institute,Pindi Bhattian, Pakistan. Water culture studies were conducted to investigate the physiological mechanismexerc...Shaheen Basma ti was evolved as a salt tolerant fine rice va riety by the Soil Salinity Research Institute,Pindi Bhattian, Pakistan. Water culture studies were conducted to investigate the physiological mechanismexercised by this variety in particular and rice plant in general to face the saline environment. Performanceof this rice variety and the concentration and uptake of ions were studied under stress of three salinity levels(30, 60 and 90 mmol L-1) created with NaCl. Recorded data indicated that shoot dry matter was notsignificantly affected by all the three levels of salinity. However, NaCl levels of 60 and 90 mmol L-1 affectedthe root dry matter significantly. Sodium concentration and uptake was enhanced significantly in root andshoot at the first level of salinity (30 mmol L-1) but thereafter the differences were non-significant, indicatingthe preferential absorption of this cation. The K concentration decreased significantly in shoots at all thelevels. The impact was less pronounced in roots as far as K absorption was concerned. The effect on Ca andMg concentrations was not significant. The values of K:Na, Ca:Na and (Ca+Mg):Na ratios in shoot and rootwere comparatively low under stress conditions, indicating that selective ion absorption may be the principalsalt tolerance mechanism of variety Shaheen Basmati when grown in a saline medium.展开更多
Evapotranspiration of much planted vegetation exceeds precipitation, and this can deplete soil water and cause a deep dry layer in the soil profile, which is a serious obstacle to sustainable land use on the Loess Pla...Evapotranspiration of much planted vegetation exceeds precipitation, and this can deplete soil water and cause a deep dry layer in the soil profile, which is a serious obstacle to sustainable land use on the Loess Plateau, China. This study aimed to determine water depletion depth of planted grassland, shrub, and forest in a semiarid area on the Loess Plateau. Soil moisture of five vegetation types was measured to >20 m in depth. The vegetation types were crop, natural grasse, seven-year-old planted alfalfa (Medicago sativa L.), 23-year-old planted caragana (Caragana microphylla Lam.) shrub, and 23-year-old planted pine (Pinus tabulaeformis L) forest land. Through comparing moisture of planted alfalfa grass, caragana shrub, and pine forest to crop and natural grassland, the depth and amount of soil water consumed by grassland, caragana brush and pine forest was determined. The depth of soil water depleted by alfalfa, caragana brush, and pine forest reached 15.5, 22.4 and 21.5 m, respectively.展开更多
The variation in nitrogen (N) uptake by rice has been widely studied but differences in rice root morphology that may contribute to this variation are not completely understood. Field and greenhouse experiments were...The variation in nitrogen (N) uptake by rice has been widely studied but differences in rice root morphology that may contribute to this variation are not completely understood. Field and greenhouse experiments were carried out to study N accumulation, root dry weights, total root lengths, root surface areas, and root bleeding rates of two rice cultivars, Elio with low N-use efficiency and Nanguang with high N-use efficiency. Low (1 mmol N L^-1) and high (5 mmol N L^-1) N applications were established in the greenhouse experiment, and the N rates were 0, 120, and 240 kg ha^-1 in the field experiments at Jiangning and Jiangpu farms, Nanjing, China. The results showed that the N accumulation, root dry weight, total root length, and root surface area increased with an increase in N application. At the heading stage, N accumulation in the shoots and roots of Nanguang was greater than that of Elio in the field experiments and that of Elio at 5 mmol N L^-1 in the greenhouse experiment. After the heading stage, N accumulation was higher for Nanguang at both 1 and 5 mmol N L^-1 in the greenhouse experiment. The total root length and root surface area were significantly different between the two cultivars. Over the range of the fertilizer application rates, the root lengths of Nanguang at Jiangning Farm were 49%-6170 greater at booting and 26%-39% greater at heading than those of Elio, and at Jiangpu Farm they were 22%-42% and 26%-38% greater, respectively. Nanguang had a greater root bleeding rate than Elio. It was concluded that the N-use efficiency of the two rice cultivars studied depended to a great extent on the root morphological parameters and root physiological characteristics at different growth stages.展开更多
The seedlings of Vernicia montana derived from seeds soaking with water (the first group)or 300 mg5L -1 mixed nitric_acid rare earth solution (the second group) were treated with various concentrations of mixed nitric...The seedlings of Vernicia montana derived from seeds soaking with water (the first group)or 300 mg5L -1 mixed nitric_acid rare earth solution (the second group) were treated with various concentrations of mixed nitric_acid rare earth solution by foliage spraying. The results showed that the seedling heights sprayed with 100 和 1 000 mg·L -1 of the first group and with 50 和 100 mg·L -1 of the second group were significantly higher than the controls, and the diameter at ground level sprayed with 300 mg·L -1 of the second group was significantly greater than the control, being 26.92% more than the latter; except for spraying with 0 mg5L -1 and 700~1 500 mg5L -1 of the second group, the seedling dry weight above ground of others was 29.13%~73.91% greater than the control, whereas the seedling dry weight under ground of others was 20.78%~116.88% greater than the control; the contents of chlorophyll a and chlorophyll b for all spraying seedling were 91.67%~191.67% and 87.5%~306.25% greater than the control, respectively, and soluble proteins and soluble sugars were 16.00%~179.78% and 10.73%~105.65% greater than the control, respectively. Compared with the control, the activity of SOD tended to increase, whereas the contents of MDA decreased. These indicated that spraying leaves with optimum concentration of mixed nitric_acid rare earth solution could markedly promote the growth of seedlings and improve resistance ability of V. montana seedlings to bad environment. On the whole, the effects of spraying the leaves of seedling with 50~500 mg5L -1 mixed nitric_acid rare earth solution, which were derived from seeds soaking with 300 mg·L -1 mixed nitric_acid rare earth solution, were good.展开更多
A long-term fertilizer experiment on dry land of the Loess Plateau, northwestChina, has been conducted since 1984 to study the distribution and accumulation of NO_3-N down to adepth of 400 cm in the profile of a coars...A long-term fertilizer experiment on dry land of the Loess Plateau, northwestChina, has been conducted since 1984 to study the distribution and accumulation of NO_3-N down to adepth of 400 cm in the profile of a coarse-textured dark loessial soilafter continuous winter wheatcropping. Thirteen fertilizer treatments consisted of four levels of N and P applied alone or incombination. Annual N and P (P_2O_5) rates were 0, 45, 90, 135 and 180 kg ha^(-1). After 15successive cropping cycles, the soil samples were taken from each treatment for analysis of NO_3-Nconcentration. The results showed that NO_3-N distribution in the soil profile was quite differentamong the treatments. The application of fertilizer N alone resulted in higher NO_3-N concentrationin the soil profile than the combined application of N and P, showing that application of P couldgreatly reduce the NO_3-N accumulation. With an annual application of 180 kg N ha^(-1) alone, a peakin NO_3-N accumulation occurred at 140 cm soildepth, and the maximum NO_3-N concentration in thesoils was 67.92 mg kg^(-1). The amount of NO_3-N accumulated in the soil profile decreased as thecumulative N uptake by the winter wheat increased. Application of a large amount of N resulted inlowerN recoveries in winter wheat and greater NO_3-N accumulation in soil profile. KO_3-N did notenter underground water in the study region; therefore, there is no danger of underground waterpollution. Amount of NO_3-N accumulation can be predicted by an equation according to annual N and Prates based on the results of this experiment.展开更多
基金Project supported by the State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences (No. 035109)the National Natural Science Foundation of China (No. 30390080).
文摘The nitrogen (N) pollution status of the 12 most important rivers in Changshu, Taihu Lake region was investigated. Water samples were collected from depths of 0.5-1.0 m with the aid of the global positioning system (GPS). The seasonal variations in the concentrations of different N components in the rivers were measured. Using tension-free monolith lysimeters and ^15N-labeled fertilizer, field experiments were carried out in this region to determine variations of iSN abundance of NO3^- in the leachate during the rice and wheat growing seasons, respectively. Results showed that the main source of N pollution of surface waters in the Taihu Lake region was not the N fertilizer applied in the farmland but the urban domestic sewage and rural human and animal excreta directly discharged into the water bodies without treatment. Atmospheric dry and wet N deposition was another evident source of N pollutant of the surface waters. In conclusion, it would not be correct to attribute the N applied to farmlands as the source of N pollution of the surface waters in this region.
基金supported by the National Natural Science Foundation of China(No.31271642)the Natural Science Foundation of Education Department of Jiangsu Province(No.09KJB20013,No.12KJB520018)+1 种基金the Six Talent Summit Project of Jiangsu Province(No.2011-NY039)the Science and Technology Innovation Development Foundation of Yangzhou University(No.2015CXJ022)
文摘Wheat biomass can be estimated using appropriate spectral vegetation indices.However,the accuracy of estimation should be further improved for on-farm crop management.Previous studies focused on developing vegetation indices,however limited research exists on modeling algorithms.The emerging Random Forest(RF) machine-learning algorithm is regarded as one of the most precise prediction methods for regression modeling.The objectives of this study were to(1) investigate the applicability of the RF regression algorithm for remotely estimating wheat biomass,(2) test the performance of the RF regression model,and(3) compare the performance of the RF algorithm with support vector regression(SVR) and artificial neural network(ANN) machine-learning algorithms for wheat biomass estimation.Single HJ-CCD images of wheat from test sites in Jiangsu province were obtained during the jointing,booting,and anthesis stages of growth.Fifteen vegetation indices were calculated based on these images.In-situ wheat above-ground dry biomass was measured during the HJ-CCD data acquisition.The results showed that the RF model produced more accurate estimates of wheat biomass than the SVR and ANN models at each stage,and its robustness is as good as SVR but better than ANN.The RF algorithm provides a useful exploratory and predictive tool for estimating wheat biomass on a large scale in Southern China.
文摘Shaheen Basma ti was evolved as a salt tolerant fine rice va riety by the Soil Salinity Research Institute,Pindi Bhattian, Pakistan. Water culture studies were conducted to investigate the physiological mechanismexercised by this variety in particular and rice plant in general to face the saline environment. Performanceof this rice variety and the concentration and uptake of ions were studied under stress of three salinity levels(30, 60 and 90 mmol L-1) created with NaCl. Recorded data indicated that shoot dry matter was notsignificantly affected by all the three levels of salinity. However, NaCl levels of 60 and 90 mmol L-1 affectedthe root dry matter significantly. Sodium concentration and uptake was enhanced significantly in root andshoot at the first level of salinity (30 mmol L-1) but thereafter the differences were non-significant, indicatingthe preferential absorption of this cation. The K concentration decreased significantly in shoots at all thelevels. The impact was less pronounced in roots as far as K absorption was concerned. The effect on Ca andMg concentrations was not significant. The values of K:Na, Ca:Na and (Ca+Mg):Na ratios in shoot and rootwere comparatively low under stress conditions, indicating that selective ion absorption may be the principalsalt tolerance mechanism of variety Shaheen Basmati when grown in a saline medium.
基金National Basic Research Program of China (Grant No. 2007CB407204)National Natural Science Foundation of China (Grant No. 40471082)
文摘Evapotranspiration of much planted vegetation exceeds precipitation, and this can deplete soil water and cause a deep dry layer in the soil profile, which is a serious obstacle to sustainable land use on the Loess Plateau, China. This study aimed to determine water depletion depth of planted grassland, shrub, and forest in a semiarid area on the Loess Plateau. Soil moisture of five vegetation types was measured to >20 m in depth. The vegetation types were crop, natural grasse, seven-year-old planted alfalfa (Medicago sativa L.), 23-year-old planted caragana (Caragana microphylla Lam.) shrub, and 23-year-old planted pine (Pinus tabulaeformis L) forest land. Through comparing moisture of planted alfalfa grass, caragana shrub, and pine forest to crop and natural grassland, the depth and amount of soil water consumed by grassland, caragana brush and pine forest was determined. The depth of soil water depleted by alfalfa, caragana brush, and pine forest reached 15.5, 22.4 and 21.5 m, respectively.
基金Supported by the National Key Basic Research Program (973 Program) of China (No.2007CB109304)the NationalNatural Science Foundation of China (Nos.30771290 and 30671234)
文摘The variation in nitrogen (N) uptake by rice has been widely studied but differences in rice root morphology that may contribute to this variation are not completely understood. Field and greenhouse experiments were carried out to study N accumulation, root dry weights, total root lengths, root surface areas, and root bleeding rates of two rice cultivars, Elio with low N-use efficiency and Nanguang with high N-use efficiency. Low (1 mmol N L^-1) and high (5 mmol N L^-1) N applications were established in the greenhouse experiment, and the N rates were 0, 120, and 240 kg ha^-1 in the field experiments at Jiangning and Jiangpu farms, Nanjing, China. The results showed that the N accumulation, root dry weight, total root length, and root surface area increased with an increase in N application. At the heading stage, N accumulation in the shoots and roots of Nanguang was greater than that of Elio in the field experiments and that of Elio at 5 mmol N L^-1 in the greenhouse experiment. After the heading stage, N accumulation was higher for Nanguang at both 1 and 5 mmol N L^-1 in the greenhouse experiment. The total root length and root surface area were significantly different between the two cultivars. Over the range of the fertilizer application rates, the root lengths of Nanguang at Jiangning Farm were 49%-6170 greater at booting and 26%-39% greater at heading than those of Elio, and at Jiangpu Farm they were 22%-42% and 26%-38% greater, respectively. Nanguang had a greater root bleeding rate than Elio. It was concluded that the N-use efficiency of the two rice cultivars studied depended to a great extent on the root morphological parameters and root physiological characteristics at different growth stages.
文摘The seedlings of Vernicia montana derived from seeds soaking with water (the first group)or 300 mg5L -1 mixed nitric_acid rare earth solution (the second group) were treated with various concentrations of mixed nitric_acid rare earth solution by foliage spraying. The results showed that the seedling heights sprayed with 100 和 1 000 mg·L -1 of the first group and with 50 和 100 mg·L -1 of the second group were significantly higher than the controls, and the diameter at ground level sprayed with 300 mg·L -1 of the second group was significantly greater than the control, being 26.92% more than the latter; except for spraying with 0 mg5L -1 and 700~1 500 mg5L -1 of the second group, the seedling dry weight above ground of others was 29.13%~73.91% greater than the control, whereas the seedling dry weight under ground of others was 20.78%~116.88% greater than the control; the contents of chlorophyll a and chlorophyll b for all spraying seedling were 91.67%~191.67% and 87.5%~306.25% greater than the control, respectively, and soluble proteins and soluble sugars were 16.00%~179.78% and 10.73%~105.65% greater than the control, respectively. Compared with the control, the activity of SOD tended to increase, whereas the contents of MDA decreased. These indicated that spraying leaves with optimum concentration of mixed nitric_acid rare earth solution could markedly promote the growth of seedlings and improve resistance ability of V. montana seedlings to bad environment. On the whole, the effects of spraying the leaves of seedling with 50~500 mg5L -1 mixed nitric_acid rare earth solution, which were derived from seeds soaking with 300 mg·L -1 mixed nitric_acid rare earth solution, were good.
基金Project supported by the Chinese Academy of Sciences (No. KZCX2)the National Natural Science Foundation of China (No. 40025106).
文摘A long-term fertilizer experiment on dry land of the Loess Plateau, northwestChina, has been conducted since 1984 to study the distribution and accumulation of NO_3-N down to adepth of 400 cm in the profile of a coarse-textured dark loessial soilafter continuous winter wheatcropping. Thirteen fertilizer treatments consisted of four levels of N and P applied alone or incombination. Annual N and P (P_2O_5) rates were 0, 45, 90, 135 and 180 kg ha^(-1). After 15successive cropping cycles, the soil samples were taken from each treatment for analysis of NO_3-Nconcentration. The results showed that NO_3-N distribution in the soil profile was quite differentamong the treatments. The application of fertilizer N alone resulted in higher NO_3-N concentrationin the soil profile than the combined application of N and P, showing that application of P couldgreatly reduce the NO_3-N accumulation. With an annual application of 180 kg N ha^(-1) alone, a peakin NO_3-N accumulation occurred at 140 cm soildepth, and the maximum NO_3-N concentration in thesoils was 67.92 mg kg^(-1). The amount of NO_3-N accumulated in the soil profile decreased as thecumulative N uptake by the winter wheat increased. Application of a large amount of N resulted inlowerN recoveries in winter wheat and greater NO_3-N accumulation in soil profile. KO_3-N did notenter underground water in the study region; therefore, there is no danger of underground waterpollution. Amount of NO_3-N accumulation can be predicted by an equation according to annual N and Prates based on the results of this experiment.