Atom transfer radical copolymerization(ATRP) of styrene(St) and N cyclohexylmaleimide(NCMI) with the CuBr/bpy catalyst in anisole, initiated by 1 phenylethyl bromide(1 PEBr) or tetra (bromomethyl)benzene(TBMB), afford...Atom transfer radical copolymerization(ATRP) of styrene(St) and N cyclohexylmaleimide(NCMI) with the CuBr/bpy catalyst in anisole, initiated by 1 phenylethyl bromide(1 PEBr) or tetra (bromomethyl)benzene(TBMB), afforded well defined copolymer with predetermined molecular weights and low polydispersities, M w/ M n<1.5. Other monomer pairs such as methyl methacrylate(MMA)/NCMI, St/ N phenylmaleimide, MMA/ N phenylmaleimide were studied, too. The influences of several factors, such as temperature, solvent and monomer’s ratio on the copolymerization with the CuBr/bpy catalyst system were subsequently investigated. The apparent activation energy of St(MMA)and NCMI was deduced from the kinetics figure of different temperatures. Using TBMB as the initiator produced four armed star copolymer. The heat resistance of the resultant copolymer has been improved by increasing the NCMI. [WT5HZ]展开更多
The polymerization behaviors of Styrene (St) in the presence of CuX/L [X=Cl or Br; L= 2,2 bipyridine (bpy), 1,10 phenanthroline (phen) or 4,7 diphenyl 1,10 phenanthroline (DPP) ] and R X (R=trichloromethyl, benz...The polymerization behaviors of Styrene (St) in the presence of CuX/L [X=Cl or Br; L= 2,2 bipyridine (bpy), 1,10 phenanthroline (phen) or 4,7 diphenyl 1,10 phenanthroline (DPP) ] and R X (R=trichloromethyl, benzyl or allyl; X=Cl or Br) have been studied and examined. In a CuCl/bpy/RCl/St system, a bimodal GPC peak at the early stage of polymerization was observed, and a concept of multi active species was proposed to explain this phenomenon. In a CuCl/phen (DPP)/RCl/St system, the \%M\%\-n of polystyrene (PS) increased linearly with St conversion and ln[M] o/[M] also increased linearly with time, indicating the living nature of this system. Furthermore, the stability of the propagating active species in a CuBr/phen/RBr/St system is higher than that in the CuBr/phen/RBr/St system.展开更多
'Living'/controlled radical polymerization of ethyl methacrylate (EMA) was carried out with a 2,2'-azobisisobutyronitrile (AIBN)/ferric chloride (FeCl_3)/triphenylphosphine (PPh_3) initiation system at 85...'Living'/controlled radical polymerization of ethyl methacrylate (EMA) was carried out with a 2,2'-azobisisobutyronitrile (AIBN)/ferric chloride (FeCl_3)/triphenylphosphine (PPh_3) initiation system at 85℃. Thc numberaverage molecular weight (M_n) increases linearly with monomer conversion and the rate of polymerization is first order withrespect to monomer concentration. The M_w of PEMA ranges from 3900 to 17600 and the polydispersity indices are quitenarrow (1.09~1.22). The conversion can reach up to~100% and M_w of the polymers obtained is close to that designed. Thepolymerization mechanism belongs to the reverse atom transfer radical polymerization (ATRP). The polymer was end-functionalized by chlorine atom, which acts as a macroinitiator to proceed extension polymerization in the presence ofCuBr/bipy catalyst system via an ATRP process. The presence of ω-chlorine in the PEMA obtained was identified by ~1H-NMR spectrum.展开更多
'Living'/controlled radical polymerization of styrene was carried out with diethyl 2,3-dicyano-2,3-diphenylsuccinate (DCDPS)/CuCl2/bipyridine (bipy) initiation system at 120 degreesC. The molecular weights of ...'Living'/controlled radical polymerization of styrene was carried out with diethyl 2,3-dicyano-2,3-diphenylsuccinate (DCDPS)/CuCl2/bipyridine (bipy) initiation system at 120 degreesC. The molecular weights of resultant PSt increased with the monomer conversion and the polydispersities were in the range of 1.37 similar to1.52. A linear ln([M](o)/[M]) versus time plot was also obtained indicating the constant concentration of growing radicals during the polymerization with this initiation system. End group analysis by H-1-NMR spectroscopic studies showed that the end groups of the polymer obtained is omega -functionalized by a chlorine group from the catalyst and alpha -functionalized by a (carbethoxy-cyano-phenyl)methyl group from the fragments of the initiator. Having CI atom at the chain end, the PSt obtained can be used as a macroinitiator to promote a chain-extension reaction with fresh St and block copolymerization reaction with a second monomer, such as methyl methacrylate, in the presence of CuCl/bipy catalyst via a conventional ATRP process.展开更多
文摘Atom transfer radical copolymerization(ATRP) of styrene(St) and N cyclohexylmaleimide(NCMI) with the CuBr/bpy catalyst in anisole, initiated by 1 phenylethyl bromide(1 PEBr) or tetra (bromomethyl)benzene(TBMB), afforded well defined copolymer with predetermined molecular weights and low polydispersities, M w/ M n<1.5. Other monomer pairs such as methyl methacrylate(MMA)/NCMI, St/ N phenylmaleimide, MMA/ N phenylmaleimide were studied, too. The influences of several factors, such as temperature, solvent and monomer’s ratio on the copolymerization with the CuBr/bpy catalyst system were subsequently investigated. The apparent activation energy of St(MMA)and NCMI was deduced from the kinetics figure of different temperatures. Using TBMB as the initiator produced four armed star copolymer. The heat resistance of the resultant copolymer has been improved by increasing the NCMI. [WT5HZ]
文摘The polymerization behaviors of Styrene (St) in the presence of CuX/L [X=Cl or Br; L= 2,2 bipyridine (bpy), 1,10 phenanthroline (phen) or 4,7 diphenyl 1,10 phenanthroline (DPP) ] and R X (R=trichloromethyl, benzyl or allyl; X=Cl or Br) have been studied and examined. In a CuCl/bpy/RCl/St system, a bimodal GPC peak at the early stage of polymerization was observed, and a concept of multi active species was proposed to explain this phenomenon. In a CuCl/phen (DPP)/RCl/St system, the \%M\%\-n of polystyrene (PS) increased linearly with St conversion and ln[M] o/[M] also increased linearly with time, indicating the living nature of this system. Furthermore, the stability of the propagating active species in a CuBr/phen/RBr/St system is higher than that in the CuBr/phen/RBr/St system.
文摘'Living'/controlled radical polymerization of ethyl methacrylate (EMA) was carried out with a 2,2'-azobisisobutyronitrile (AIBN)/ferric chloride (FeCl_3)/triphenylphosphine (PPh_3) initiation system at 85℃. Thc numberaverage molecular weight (M_n) increases linearly with monomer conversion and the rate of polymerization is first order withrespect to monomer concentration. The M_w of PEMA ranges from 3900 to 17600 and the polydispersity indices are quitenarrow (1.09~1.22). The conversion can reach up to~100% and M_w of the polymers obtained is close to that designed. Thepolymerization mechanism belongs to the reverse atom transfer radical polymerization (ATRP). The polymer was end-functionalized by chlorine atom, which acts as a macroinitiator to proceed extension polymerization in the presence ofCuBr/bipy catalyst system via an ATRP process. The presence of ω-chlorine in the PEMA obtained was identified by ~1H-NMR spectrum.
文摘'Living'/controlled radical polymerization of styrene was carried out with diethyl 2,3-dicyano-2,3-diphenylsuccinate (DCDPS)/CuCl2/bipyridine (bipy) initiation system at 120 degreesC. The molecular weights of resultant PSt increased with the monomer conversion and the polydispersities were in the range of 1.37 similar to1.52. A linear ln([M](o)/[M]) versus time plot was also obtained indicating the constant concentration of growing radicals during the polymerization with this initiation system. End group analysis by H-1-NMR spectroscopic studies showed that the end groups of the polymer obtained is omega -functionalized by a chlorine group from the catalyst and alpha -functionalized by a (carbethoxy-cyano-phenyl)methyl group from the fragments of the initiator. Having CI atom at the chain end, the PSt obtained can be used as a macroinitiator to promote a chain-extension reaction with fresh St and block copolymerization reaction with a second monomer, such as methyl methacrylate, in the presence of CuCl/bipy catalyst via a conventional ATRP process.