In this study,three-probe error separation was developed with three chromatic confocal displacement sensors for roundness measurement.Here,the harmonic suppression is discussed first to set suitable orientation angles...In this study,three-probe error separation was developed with three chromatic confocal displacement sensors for roundness measurement.Here,the harmonic suppression is discussed first to set suitable orientation angles among three sensors.Monte Carlo simulation is utilized to test the error separation and optimize the orientation angles and off-axial distance.The experimental setup is established using chromatic confocal sensors with a precise rotary platform.The experimental results show that the measured roundness with an orientation-angle combination of(0°,90.1°,and 178.6°)is much better than that of another nonoptimal selection(0°,90.4°,and 177.4°).The roundness error is only 0.7%between the proposed measurement system and an expensive ultraprecision roundness meter.Furthermore,it is proven that the eccentricity distance should be decreased as small as possible to improve the measurement accuracy.In sum,this paper proposes a feasible method for roundness measurement with reliable simulations,easily integrated sensors,and an ordinary precision rotary platform.展开更多
To overcome the limitations posed by three-dimensional corner separation,this paper proposes a novel flow control technology known as passive End-Wall(EW)self-adaptive jet.Two single EW slotted schemes(EWS1 and EWS2),...To overcome the limitations posed by three-dimensional corner separation,this paper proposes a novel flow control technology known as passive End-Wall(EW)self-adaptive jet.Two single EW slotted schemes(EWS1 and EWS2),alongside a combined(COM)scheme featuring double EW slots,were investigated.The results reveal that the EW slot,driven by pressure differentials between the pressure and suction sides,can generate an adaptive jet with escalating velocity as the operational load increases.This high-speed jet effectively re-excites the local low-energy fluid,thereby mitigating the corner separation.Notably,the EWS1 slot,positioned near the blade leading edge,exhibits relatively low jet velocities at negative incidence angles,causing jet separation and exacerbating the corner separation.Besides,the EWS2 slot is close to the blade trailing edge,resulting in massive low-energy fluid accumulating and separating before the slot outlet at positive incidence angles.In contrast,the COM scheme emerges as the most effective solution for comprehensive corner separation control.It can significantly reduce the total pressure loss and improve the static pressure coefficient for the ORI blade at 0°-4° incidence angles,while causing minimal negative impact on the aerodynamic performance at negative incidence angles.Therefore,the corner stall is delayed,and the available incidence angle range is broadened from -10°--2°to -10°-4°.This holds substantial promise for advancing the aerodynamic performance,operational stability,and load capacity of future highly loaded compressors.展开更多
In order to measure three-axis intersection error, two crosshair targets were fixed in the inner axis frame of a three-axis turntable. Also a theodolite was used to point its telescope to the targets and to measure th...In order to measure three-axis intersection error, two crosshair targets were fixed in the inner axis frame of a three-axis turntable. Also a theodolite was used to point its telescope to the targets and to measure the horizontal angles when three axes were on equi-spaced angle positions. The calculation equations of the axis intersection were deduced from the mounting position of the theodolite, positions of two targets, angular positions of three axes, and the measured horizontal angles with the theodolite. Finally, a practical measurement is carried out on a horizontal three-axis turntable and error analysis is conducted.展开更多
Graphite anode materials are widely used in commercial lithium-ion batteries;however, the long electron/ion transportation path restricted its high energy storage. In this experiment, we designed a copper/graphite com...Graphite anode materials are widely used in commercial lithium-ion batteries;however, the long electron/ion transportation path restricted its high energy storage. In this experiment, we designed a copper/graphite composite with a dual three-dimensional(3 D) continuous porous structure combining used nonsolvent-induced phase separation and heat treatment, in which a large amount of graphite is embedded in the 3 D porous copper/carbon architecture. In the novel structure, not only the electron and Li^(+) transmission performances are improved, but also the space of current collector is fully utilized. Meanwhile,carbonized polyacrylonitrile network stabilizes the interface between graphite and copper matrix. The obtained copper/graphite composite anode has an initial discharge capacity of 524.6 mAh·g^(-1), a holding capacity of350 mAh·g^(-1) and excellent cycle stability(299.3 mAh·g^(-1) after 180 cycles at 0.1 C rate), exhibiting good electrochemical performance. The experimental results show that the mass loading of the copper/graphite composite electrode material is about 4.39 mg·cm^(-2). We also envisage replacing graphite with other high-capacity active materials to fill the current collector, which can provide a reference for the future development of next-generation advanced electrodes.展开更多
The effects of thickness-to-chord(t=c)ratio,anhedral angle(d),and cropping ratio from trailing-edge(Cr%)on the aerodynamics of non-slender reverse delta wings in comparison to non-slender delta wings with sweep angle ...The effects of thickness-to-chord(t=c)ratio,anhedral angle(d),and cropping ratio from trailing-edge(Cr%)on the aerodynamics of non-slender reverse delta wings in comparison to non-slender delta wings with sweep angle of 45°were characterized in a low-speed wind tunnel using force and pressure measurements.The measurements were conducted for total of 8 different delta and reverse delta wings.Two different t/c ratios of 5.9%and 1.1%,and two different anhedral angles ofd=15°and 30°for non-cropped and cropped at Cr=30%conditions were tested.The results indicate that the reverse delta wings generate higher lift-to-drag ratio and have better longitudinal static stability characteristics compared to the delta wings.The wing thickness has favorable effect on longitudinal static stability for the reverse delta wing whereas longitudinal static stability is not influenced by wing thickness for the delta wing.For reverse delta wings,the anhe-draled wing without cropping has adverse effect on aerodynamic performance and decreases the lift-to-drag ratio.Cropping in anhedraled wing causes significant improvement in lift-to-drag ratio,shift in aerodynamic and pressure centers towards the trailing-edge,and enhancement in longitudi-nal static stability.展开更多
Over the forty years since reform and opening up,China’s rural land system has undergone a drastic transition from the Two Rights Separation to the Three Rights Separation.Any examination of the latter must be ground...Over the forty years since reform and opening up,China’s rural land system has undergone a drastic transition from the Two Rights Separation to the Three Rights Separation.Any examination of the latter must be grounded in the crucial field of land transfer.Our fieldwork in different areas across China revealed that the rapid development of industrialization and urbanization has driven a drastic increase in the intensive,large-scale transfer of land.As a result,the traditional small-farmer economy is disintegrating,accompanied by a widening distance between farmers and the land.In practice,the Three Rights Separation system exhibits some new characteristics:the growing substantiation of the ownership rights of the village collective,the demutualization of the contracting rights of farm households and the marketization of management rights.At the same time,in practice we have also seen a strengthening of the position of those enjoying ownership rights and management rights and a weakening of the position of those possessing contracting rights.To change the rural land system and accomplish its goal of rural revitalization,China must endeavor to construct a new type of collective market economy.展开更多
A scheme for dealing with the quantum three-body problem is presented to separate the rotational degrees of freedom completely from the internal ones. In this method, the three-body Schrodinger equation is reduced to ...A scheme for dealing with the quantum three-body problem is presented to separate the rotational degrees of freedom completely from the internal ones. In this method, the three-body Schrodinger equation is reduced to a system of coupled partial differential equations, depending only upon three internal variables. For arbitrary total orbital angular momentum / and the parity (? 1) l+λ (λ = 0 or 1), the number of the equations in this system isl = 1 ?λ. By expanding the wavefunction with respect to a complete set of orthonormal basis functions, the system of equations is further reduced to a system of linear algebraic equations.展开更多
An experimental apparatus was developed to study the three dimensional separated flow with spiral-foci. The internal decelerating flow was generated by the air suction from a side wall to produce the separation on an ...An experimental apparatus was developed to study the three dimensional separated flow with spiral-foci. The internal decelerating flow was generated by the air suction from a side wall to produce the separation on an opposite-side wall. The relation between the upstream boundary layer and the generation of spiral-foci in the separation region was observed by a tuft method. As a result, it was clarified that the spiral-focus type separation could be produced on the side wall and its behavior was closely related to the vortices supplied into the separation region from the boundary layer developing along top wall or bottom one.展开更多
Analyzed the selected raw coal nature and forecasted the number quality of its separated product. Considering each product's density, volume, and suspending liquid assignment, combining the separating mechanism of th...Analyzed the selected raw coal nature and forecasted the number quality of its separated product. Considering each product's density, volume, and suspending liquid assignment, combining the separating mechanism of the cyclone and the rela- tive formulas obtained from scientific experimentation and practice, the structure parameter was determined by calculation. This provides a more scientific reasonable method for determining the structure parameter of the unpressurized feeding three-product heavy-medium cyclone.展开更多
基金This work was supported by the National Natural Science Foundation of China(61905129)Start-up Funding of Tsinghua Shenzhen International Graduate School,Tsinghua University(QD2020001N)Shenzhen Stable Supporting Program(WDZC20200820200655001).
文摘In this study,three-probe error separation was developed with three chromatic confocal displacement sensors for roundness measurement.Here,the harmonic suppression is discussed first to set suitable orientation angles among three sensors.Monte Carlo simulation is utilized to test the error separation and optimize the orientation angles and off-axial distance.The experimental setup is established using chromatic confocal sensors with a precise rotary platform.The experimental results show that the measured roundness with an orientation-angle combination of(0°,90.1°,and 178.6°)is much better than that of another nonoptimal selection(0°,90.4°,and 177.4°).The roundness error is only 0.7%between the proposed measurement system and an expensive ultraprecision roundness meter.Furthermore,it is proven that the eccentricity distance should be decreased as small as possible to improve the measurement accuracy.In sum,this paper proposes a feasible method for roundness measurement with reliable simulations,easily integrated sensors,and an ordinary precision rotary platform.
基金sponsored by the National Natural Science Foundation of China(No.52106057)the National Major Science and Technology Projects of China(No.2017-Ⅱ-0001-0013)+2 种基金Fundamental Research Funds for the Central Universities of China(No.D5000210483)the Foundation of State Level Key Laboratory of Airfoil and Cascade Aerodynamics of China(Nos.D5150210006 and D5050210015)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University of China(No.CX2023012).
文摘To overcome the limitations posed by three-dimensional corner separation,this paper proposes a novel flow control technology known as passive End-Wall(EW)self-adaptive jet.Two single EW slotted schemes(EWS1 and EWS2),alongside a combined(COM)scheme featuring double EW slots,were investigated.The results reveal that the EW slot,driven by pressure differentials between the pressure and suction sides,can generate an adaptive jet with escalating velocity as the operational load increases.This high-speed jet effectively re-excites the local low-energy fluid,thereby mitigating the corner separation.Notably,the EWS1 slot,positioned near the blade leading edge,exhibits relatively low jet velocities at negative incidence angles,causing jet separation and exacerbating the corner separation.Besides,the EWS2 slot is close to the blade trailing edge,resulting in massive low-energy fluid accumulating and separating before the slot outlet at positive incidence angles.In contrast,the COM scheme emerges as the most effective solution for comprehensive corner separation control.It can significantly reduce the total pressure loss and improve the static pressure coefficient for the ORI blade at 0°-4° incidence angles,while causing minimal negative impact on the aerodynamic performance at negative incidence angles.Therefore,the corner stall is delayed,and the available incidence angle range is broadened from -10°--2°to -10°-4°.This holds substantial promise for advancing the aerodynamic performance,operational stability,and load capacity of future highly loaded compressors.
文摘In order to measure three-axis intersection error, two crosshair targets were fixed in the inner axis frame of a three-axis turntable. Also a theodolite was used to point its telescope to the targets and to measure the horizontal angles when three axes were on equi-spaced angle positions. The calculation equations of the axis intersection were deduced from the mounting position of the theodolite, positions of two targets, angular positions of three axes, and the measured horizontal angles with the theodolite. Finally, a practical measurement is carried out on a horizontal three-axis turntable and error analysis is conducted.
基金financially supported by Tianjin Municipal Education Committee Scientific Research Project (No.2017KJ075)。
文摘Graphite anode materials are widely used in commercial lithium-ion batteries;however, the long electron/ion transportation path restricted its high energy storage. In this experiment, we designed a copper/graphite composite with a dual three-dimensional(3 D) continuous porous structure combining used nonsolvent-induced phase separation and heat treatment, in which a large amount of graphite is embedded in the 3 D porous copper/carbon architecture. In the novel structure, not only the electron and Li^(+) transmission performances are improved, but also the space of current collector is fully utilized. Meanwhile,carbonized polyacrylonitrile network stabilizes the interface between graphite and copper matrix. The obtained copper/graphite composite anode has an initial discharge capacity of 524.6 mAh·g^(-1), a holding capacity of350 mAh·g^(-1) and excellent cycle stability(299.3 mAh·g^(-1) after 180 cycles at 0.1 C rate), exhibiting good electrochemical performance. The experimental results show that the mass loading of the copper/graphite composite electrode material is about 4.39 mg·cm^(-2). We also envisage replacing graphite with other high-capacity active materials to fill the current collector, which can provide a reference for the future development of next-generation advanced electrodes.
基金supported by Turkish Aerospace Industries,Inc.and Middle East Technical University(No.BAP TEZ-D-302-2021-10725).
文摘The effects of thickness-to-chord(t=c)ratio,anhedral angle(d),and cropping ratio from trailing-edge(Cr%)on the aerodynamics of non-slender reverse delta wings in comparison to non-slender delta wings with sweep angle of 45°were characterized in a low-speed wind tunnel using force and pressure measurements.The measurements were conducted for total of 8 different delta and reverse delta wings.Two different t/c ratios of 5.9%and 1.1%,and two different anhedral angles ofd=15°and 30°for non-cropped and cropped at Cr=30%conditions were tested.The results indicate that the reverse delta wings generate higher lift-to-drag ratio and have better longitudinal static stability characteristics compared to the delta wings.The wing thickness has favorable effect on longitudinal static stability for the reverse delta wing whereas longitudinal static stability is not influenced by wing thickness for the delta wing.For reverse delta wings,the anhe-draled wing without cropping has adverse effect on aerodynamic performance and decreases the lift-to-drag ratio.Cropping in anhedraled wing causes significant improvement in lift-to-drag ratio,shift in aerodynamic and pressure centers towards the trailing-edge,and enhancement in longitudi-nal static stability.
基金National Social Science Fund of China key project“Research on the Implementation and Transitional Path of the Basic Rural Operation System in China”(14ZDA036)
文摘Over the forty years since reform and opening up,China’s rural land system has undergone a drastic transition from the Two Rights Separation to the Three Rights Separation.Any examination of the latter must be grounded in the crucial field of land transfer.Our fieldwork in different areas across China revealed that the rapid development of industrialization and urbanization has driven a drastic increase in the intensive,large-scale transfer of land.As a result,the traditional small-farmer economy is disintegrating,accompanied by a widening distance between farmers and the land.In practice,the Three Rights Separation system exhibits some new characteristics:the growing substantiation of the ownership rights of the village collective,the demutualization of the contracting rights of farm households and the marketization of management rights.At the same time,in practice we have also seen a strengthening of the position of those enjoying ownership rights and management rights and a weakening of the position of those possessing contracting rights.To change the rural land system and accomplish its goal of rural revitalization,China must endeavor to construct a new type of collective market economy.
文摘A scheme for dealing with the quantum three-body problem is presented to separate the rotational degrees of freedom completely from the internal ones. In this method, the three-body Schrodinger equation is reduced to a system of coupled partial differential equations, depending only upon three internal variables. For arbitrary total orbital angular momentum / and the parity (? 1) l+λ (λ = 0 or 1), the number of the equations in this system isl = 1 ?λ. By expanding the wavefunction with respect to a complete set of orthonormal basis functions, the system of equations is further reduced to a system of linear algebraic equations.
文摘An experimental apparatus was developed to study the three dimensional separated flow with spiral-foci. The internal decelerating flow was generated by the air suction from a side wall to produce the separation on an opposite-side wall. The relation between the upstream boundary layer and the generation of spiral-foci in the separation region was observed by a tuft method. As a result, it was clarified that the spiral-focus type separation could be produced on the side wall and its behavior was closely related to the vortices supplied into the separation region from the boundary layer developing along top wall or bottom one.
文摘Analyzed the selected raw coal nature and forecasted the number quality of its separated product. Considering each product's density, volume, and suspending liquid assignment, combining the separating mechanism of the cyclone and the rela- tive formulas obtained from scientific experimentation and practice, the structure parameter was determined by calculation. This provides a more scientific reasonable method for determining the structure parameter of the unpressurized feeding three-product heavy-medium cyclone.