针对无人机在障碍间存在狭窄通道的城市环境中进行低空航路规划的问题,根据障碍之间的空间几何关系确定障碍之间的狭窄通道,再综合所有狭窄通道生成复杂环境中的狭窄通道路径树。设计了结合狭窄通道路径树的双向快速扩展随机树(Rapidly-...针对无人机在障碍间存在狭窄通道的城市环境中进行低空航路规划的问题,根据障碍之间的空间几何关系确定障碍之间的狭窄通道,再综合所有狭窄通道生成复杂环境中的狭窄通道路径树。设计了结合狭窄通道路径树的双向快速扩展随机树(Rapidly-exploring Random Tree,RRT)算法,在两棵搜索树的扩展过程中,通过判断搜索树与狭窄通道路径树的位置关系,将狭窄通道路径树添加到搜索树上,实现搜索树在狭窄通道中的快速扩展,减少两棵搜索树的无用扩展,提升航路树生成的速度。仿真结果表明,该方法能够解决无人机在存在狭窄通道的复杂环境中进行快速有效航路规划的问题。展开更多
文摘针对无人机在障碍间存在狭窄通道的城市环境中进行低空航路规划的问题,根据障碍之间的空间几何关系确定障碍之间的狭窄通道,再综合所有狭窄通道生成复杂环境中的狭窄通道路径树。设计了结合狭窄通道路径树的双向快速扩展随机树(Rapidly-exploring Random Tree,RRT)算法,在两棵搜索树的扩展过程中,通过判断搜索树与狭窄通道路径树的位置关系,将狭窄通道路径树添加到搜索树上,实现搜索树在狭窄通道中的快速扩展,减少两棵搜索树的无用扩展,提升航路树生成的速度。仿真结果表明,该方法能够解决无人机在存在狭窄通道的复杂环境中进行快速有效航路规划的问题。