本文概述了基于粒子加速器的核物理研究主要的前沿方向和重要科学问题,分析了用于核物理研究的粒子加速器大科学装置发展现状和未来发展态势.国家"十二五"重大科技基础设施"强流重离子加速器装置"(High Intensity h...本文概述了基于粒子加速器的核物理研究主要的前沿方向和重要科学问题,分析了用于核物理研究的粒子加速器大科学装置发展现状和未来发展态势.国家"十二五"重大科技基础设施"强流重离子加速器装置"(High Intensity heavy-ion Accelerator Facility,HIAF)和"加速器驱动的嬗变研究装置"(China Initiative Accelerator Driven System,CiADS)正在广东惠州建设.以HIAF和CiADS为基础,本文提出建设用于核物理及其交叉前沿研究的大型带电粒子加速器集群装置——高亮度电子-离子研究装置(Bright Electron and Ion Research Facility,BEIF).依托BEIF装置拟开展的核物理前沿研究方向包括原子核结构、核天体物理、核子结构、夸克物质相结构,以及基础物理若干重要前沿与核物理的交叉,如高离化态原子物理、重离子驱动的高能量密度物理等.BEIF是由多台超导直线加速器、同步加速器、储存环、反应堆和各类大型实验探测器及实验终端等组成的大科学装置集群.BEIF计划分三期进行建设,建成后的装置将极大地推动我国的核物理和核科学技术研究能力的提升.展开更多
With the nonsubsampled contourlet transform (NSCT), a novel region-segmentation-based fusion algorithm for infrared (IR) and visible images is presented. The IR image is segmented according to the physical feature...With the nonsubsampled contourlet transform (NSCT), a novel region-segmentation-based fusion algorithm for infrared (IR) and visible images is presented. The IR image is segmented according to the physical features of the target. The source images are decomposed by the NSCT, and then, different fusion rules for the target regions and the background regions are employed to merge the NSCT coefficients respectively. Finally, the fused image is obtained by applying the inverse NSCT. Experimental results show that the proposed algorithm outperforms the pixel-based methods, including the traditional wavelet-based method and NSCT-based method.展开更多
Several large-scale scientific facilities(LSSF) are running and several others are under construction in China.Recent progress made by Chinese scientists in theoretical study of nuclear physics related to these facili...Several large-scale scientific facilities(LSSF) are running and several others are under construction in China.Recent progress made by Chinese scientists in theoretical study of nuclear physics related to these facilities is reviewed.The emphasis is put on those topics covered in the issue entitled "Special Topics on Some Theoretical Nuclear Physics Aspects Related to Large-scale Scientific Facilities"(in Sci China Ser G-Phys Mech Astron,Vol.52,No.10,2009).展开更多
The pseudorapidity distributions of charged particles produced in Cu-Cu collisions over an energy range from 22.4 GeV to 200 GeV are investigated by using a multi-source ideal gas model which contains systematically t...The pseudorapidity distributions of charged particles produced in Cu-Cu collisions over an energy range from 22.4 GeV to 200 GeV are investigated by using a multi-source ideal gas model which contains systematically the contributions of leading nucleons. It is shown that the calculated results are in agreement with the experimental data and the model is successful in the description of the pseudorapidity distribution of charged particles. The contributions of leading nucleons increase with the increasing impact parameter. The cylinder length (the longitudinal shift of the interacting system) in rapidity space increases with the increasing energy and does not depend on centrality at a given energy.展开更多
Single photon counting imaging technology has been widely used in space environment detection, astronomy observation, nuclear physics, and ultraweak bioluminescence. However, the distortion of the single photon counti...Single photon counting imaging technology has been widely used in space environment detection, astronomy observation, nuclear physics, and ultraweak bioluminescence. However, the distortion of the single photon counting image will badly affect the measurement results. Therefore, the correction of distortion for single photon counting image is very significant. Ultraviolet single photon imaging system with wedge and strip anode is introduced and the influence factor leading to image distortion is analyzed. To correct original distorted image, three different image correction methods, namely, the physical correction, the global correction, and the local correction, are applied. In addition, two parameters, i.e., the position index and the linearity index, are defined to evaluate the performance of the three methods. The results suggest that the correction methods can improve the quality of the initial image without losing gray information of each counting light spot. And the local correction can provide the best visual inspections and performance evaluation among the three methods.展开更多
By using a suitable set of the surface energy coefficient, nuclear radius, and universal function, the original proximity potential 1977 is modified. The overestimate of the data by 4% reported in the literature is si...By using a suitable set of the surface energy coefficient, nuclear radius, and universal function, the original proximity potential 1977 is modified. The overestimate of the data by 4% reported in the literature is significantly reduced. Our modified proximity potential reproduces the experimental data nicely compared to its older versions.展开更多
文摘本文概述了基于粒子加速器的核物理研究主要的前沿方向和重要科学问题,分析了用于核物理研究的粒子加速器大科学装置发展现状和未来发展态势.国家"十二五"重大科技基础设施"强流重离子加速器装置"(High Intensity heavy-ion Accelerator Facility,HIAF)和"加速器驱动的嬗变研究装置"(China Initiative Accelerator Driven System,CiADS)正在广东惠州建设.以HIAF和CiADS为基础,本文提出建设用于核物理及其交叉前沿研究的大型带电粒子加速器集群装置——高亮度电子-离子研究装置(Bright Electron and Ion Research Facility,BEIF).依托BEIF装置拟开展的核物理前沿研究方向包括原子核结构、核天体物理、核子结构、夸克物质相结构,以及基础物理若干重要前沿与核物理的交叉,如高离化态原子物理、重离子驱动的高能量密度物理等.BEIF是由多台超导直线加速器、同步加速器、储存环、反应堆和各类大型实验探测器及实验终端等组成的大科学装置集群.BEIF计划分三期进行建设,建成后的装置将极大地推动我国的核物理和核科学技术研究能力的提升.
基金the National Natu-ral Science Foundation of China (No.60572152)the National 863 Program of China (No.2006AA01Z127).
文摘With the nonsubsampled contourlet transform (NSCT), a novel region-segmentation-based fusion algorithm for infrared (IR) and visible images is presented. The IR image is segmented according to the physical features of the target. The source images are decomposed by the NSCT, and then, different fusion rules for the target regions and the background regions are employed to merge the NSCT coefficients respectively. Finally, the fused image is obtained by applying the inverse NSCT. Experimental results show that the proposed algorithm outperforms the pixel-based methods, including the traditional wavelet-based method and NSCT-based method.
基金supported by the National Natural Science Foundation of China (10875157,10975100,and 10979066)National Basic Research Pr-gram of China (2007CB815000)Chinese Academy of Sciences (KJCX2-EW-N01,KJCX2-SW-N17,and KJCX2-YW-N32)
文摘Several large-scale scientific facilities(LSSF) are running and several others are under construction in China.Recent progress made by Chinese scientists in theoretical study of nuclear physics related to these facilities is reviewed.The emphasis is put on those topics covered in the issue entitled "Special Topics on Some Theoretical Nuclear Physics Aspects Related to Large-scale Scientific Facilities"(in Sci China Ser G-Phys Mech Astron,Vol.52,No.10,2009).
基金Supported by the National Natural Science Foundation of China under Grant Nos 10975095 and 10675077, the Shanxi Provincial Natural Science Foundation under Grant No 2007011005, and the Shanxi Provincial Foundation for Returned Overseas Scholars under Grant No[2007]13.
文摘The pseudorapidity distributions of charged particles produced in Cu-Cu collisions over an energy range from 22.4 GeV to 200 GeV are investigated by using a multi-source ideal gas model which contains systematically the contributions of leading nucleons. It is shown that the calculated results are in agreement with the experimental data and the model is successful in the description of the pseudorapidity distribution of charged particles. The contributions of leading nucleons increase with the increasing impact parameter. The cylinder length (the longitudinal shift of the interacting system) in rapidity space increases with the increasing energy and does not depend on centrality at a given energy.
基金supported by the Knowledge Innovation Program of Chinese Academy of Sciences.
文摘Single photon counting imaging technology has been widely used in space environment detection, astronomy observation, nuclear physics, and ultraweak bioluminescence. However, the distortion of the single photon counting image will badly affect the measurement results. Therefore, the correction of distortion for single photon counting image is very significant. Ultraviolet single photon imaging system with wedge and strip anode is introduced and the influence factor leading to image distortion is analyzed. To correct original distorted image, three different image correction methods, namely, the physical correction, the global correction, and the local correction, are applied. In addition, two parameters, i.e., the position index and the linearity index, are defined to evaluate the performance of the three methods. The results suggest that the correction methods can improve the quality of the initial image without losing gray information of each counting light spot. And the local correction can provide the best visual inspections and performance evaluation among the three methods.
文摘By using a suitable set of the surface energy coefficient, nuclear radius, and universal function, the original proximity potential 1977 is modified. The overestimate of the data by 4% reported in the literature is significantly reduced. Our modified proximity potential reproduces the experimental data nicely compared to its older versions.