High-frequency electromagnetic waves and electronic products can bring great convenience to people’s life,but lead to a series of electromagnetic interference(EMI)problems,such as great potential dangers to the norma...High-frequency electromagnetic waves and electronic products can bring great convenience to people’s life,but lead to a series of electromagnetic interference(EMI)problems,such as great potential dangers to the normal operation of elec-tronic components and human safety.Therefore,the research of EMI shield-ing materials has attracted extensive attention by the scholars.Among them,polymer-based EMI shielding materials with light weight,high specific strength,and stable properties have become the current mainstream.The construction of 3D conductive networks has proved to be an effective method for the prepara-tion of polymer-based EMI shielding materials with excellent shielding effective-ness(SE).In this paper,the shielding mechanism of polymer-based EMI shield-ing materials with 3D conductive networks is briefly introduced,with emphasis on the preparation methods and latest research progress of polymer-based EMI shielding materials with different 3D conductive networks.The key scientific and technical problems to be solved in the field of polymer-based EMI shielding materials are also put forward.Finally,the development trend and application prospects of polymer-based EMI shielding materials are prospected.展开更多
Lithium ion battery has achieved great success in portable electronics and even recently electronic vehicles since its commercialization in 1990s.However,lithium-ion batteries are confronted with several issues in ter...Lithium ion battery has achieved great success in portable electronics and even recently electronic vehicles since its commercialization in 1990s.However,lithium-ion batteries are confronted with several issues in terms of the sustainable development such as the high price of raw materials and electronic products,the emerging safety accidents,etc.The recent progresses are herein emphasized on lithium batteries for energy storage to clearly understand the sustainable energy chemistry and emerging energymaterials.The Perspective presents novel lithium-ion batteries developed with the aims of enhancing the electrochemical performance and sustainability of energy storage systems.First,revolutionary material chemistries,including novel low-cobalt cathode,organic electrode,and aqueous electrolyte,are discussed.Then,the characteristics of safety performance are analyzed and strategies to enhance safety are subsequently evaluated.Battery recycling is considered as the key factor for a sustainable society and related technologies are present as well.Finally,conclusion and outlook are drawn to shed lights on the further development of sustainable lithium-ion batteries.展开更多
Lithium-ion batteries(LIBs)are booming in multiple fields due to a rapid devel-opment in the last decade.However,limited by operational lifespans,a grow-ing number of spent LIBs reaching the end of their lives are con...Lithium-ion batteries(LIBs)are booming in multiple fields due to a rapid devel-opment in the last decade.However,limited by operational lifespans,a grow-ing number of spent LIBs reaching the end of their lives are consequently faced with serious accumulation and descended to hazardous waste.Without proper disposal,the spent LIBs will inevitably cause negative influence on the ecol-ogy and undermine the sustainable manufacture of LIBs.The initial research of recycling strategies mainly focused on the optimization of metallurgical pro-cesses.Recently,the sustainability of the recycling process has attracted much more attention and become an important factor.Here,we summarize the recent progress of the spent LIBs recycling from a sustainable perspective,especially discussing the green innovations in recycling strategies for spent LIBs.Through this article,we expect to reveal the challenges and developing tendency of the recycling strategies and provide a guideline for future researches on process-ing spent LIBs and beyond,like the recycling of the solid-state lithium metal batteries.展开更多
High-energy-density lithium metal batteries(LMBs)are widely accepted as promising next-generation energy storage systems.However,the safety features of practical LMBs are rarely explored quantitatively.Herein,the ther...High-energy-density lithium metal batteries(LMBs)are widely accepted as promising next-generation energy storage systems.However,the safety features of practical LMBs are rarely explored quantitatively.Herein,the thermal runaway behaviors of a 3.26 Ah(343 Wh kg^(−1))Li|LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2)pouch cell in the whole life cycle are quantitatively investigated by extended volume-accelerating rate calorimetry and differential scanning calorimetry.By thermal failure analyses on pristine cell with fresh Li metal,activated cell with once plated dendrites,and 20-cycled cell with large quantities of dendrites and dead Li,dendrite-accelerated thermal runaway mechanisms including reaction sequence and heat release contribution are reached.Suppressing dendrite growth and reducing the reactivity between Li metal anode and electrolyte at high temperature are effective strategies to enhance the safety performance of LMBs.These findings can largely enhance the understanding on the thermal runaway behaviors of Li metal pouch cells in practical working conditions.展开更多
Lithium–sulfur(Li-S)batteries are promising next-generation energy storage systems with ultrahigh energy density.However,the intrinsic sluggish“solid–liquid–solid”reaction between S8 and Li2S causes unavoidable s...Lithium–sulfur(Li-S)batteries are promising next-generation energy storage systems with ultrahigh energy density.However,the intrinsic sluggish“solid–liquid–solid”reaction between S8 and Li2S causes unavoidable shuttling of polysulfides,severely limiting the practical energy density and cycling performance.Recently,the catalysis process has been introduced for the sulfur redox reaction to accelerate the conversion of polysulfides,providing a positive remedy for the polysulfides shuttling.Nevertheless,in-depth understanding of the catalyst evaluation criteria and catalytic mechanism still lies in the“black box”,and precise characterization technique is the key to unlock this puzzle.In this review,we provide a comprehensive overview of characterization techniques on the catalyst in Li-S batteries from two aspects of catalytic performance and catalytic mechanism,highlighting their significance and calling for more efforts to develop precise and fast techniques for Li-S catalysis.Moreover,we envision the future development of characterization for better understanding the catalysis toward practical Li-S battery.展开更多
Electrochemical water splitting for hydrogen production has sparked intensive interests because it provides a new approach for sustainable energy resources and the avoidance of environmental problems.The precious meta...Electrochemical water splitting for hydrogen production has sparked intensive interests because it provides a new approach for sustainable energy resources and the avoidance of environmental problems.The precious metal-based sin-gle atomic catalysts(PMSACs)have been widely employed in water splitting catalysis by virtue of their maximum atom utilization and unique electronic structure,which can reduce metal amounts and remain high catalytic perfor-mance simultaneously.In this review,we will summarize recent research efforts toward developing SACs based on precious metals with excellent performance for electrochemical water splitting catalysis.First,the synthesis strategies for PMSACs will be classified and introduced including high-temperature pyrolysis,electrochemical method,photochemical reduction,wet chemistry method,etc.Then,a short description of characterization techniques for SACs will be given,which mainly involves the aberration-corrected scanning-transmission electron microscopy(AC-STEM)and X-ray absorption spectroscopy(XAS).In particular,the relationship between the electronic structure of the precious metal atomic sites and performance for water splitting will be discussed according to the the-oretical and experimental results.Finally,a brief perspective will be provided to highlight the challenges and opportunities for the development of novel PMSACs suitable for electrochemical water splitting applications.展开更多
The pursuit of sustainable energy has a great request for advanced energy stor-age devices.Lithium metal batteries are regarded as a potential electrochemi-cal storage system because of the extremely high capacity and...The pursuit of sustainable energy has a great request for advanced energy stor-age devices.Lithium metal batteries are regarded as a potential electrochemi-cal storage system because of the extremely high capacity and the most nega-tive electrochemical potential of lithium metal anode.Dead lithium formed in the stripping process significantly contributes to the low efficiency and short lifespan of rechargeable lithium metal batteries.This review displays a critical review on the current research status about the stripping electrochemistry of lithium metal anode.The significance of stripping process to a robust lithium metal anode is emphasized.The stripping models in different electrochemical scenarios are discussed.Specific attention is paid to the understanding for the electrochemical principles of atom diffusion,electrochemical reaction,ion dif-fusion in solid electrolyte interphase(SEI),and electron transfer with the pur-pose to strengthen the insights into the behavior of lithium electrode stripping.The factors affecting stripping processes and corresponding solutions are sum-marized and categorized as follows:surface physics,SEI,operational and exter-nal factors.This review affords fresh insights to explore the lithium anode and design robust lithium metal batteries based on the comprehensive understand-ing of the stripping electrochemistry.展开更多
Sodium-ion batteries(SIBs)have been extensively studied as the potential alter-native to lithium-ion batteries(LIBs)due to the abundant natural reserves and low price of sodium resources.Nevertheless,Na+ions possess a...Sodium-ion batteries(SIBs)have been extensively studied as the potential alter-native to lithium-ion batteries(LIBs)due to the abundant natural reserves and low price of sodium resources.Nevertheless,Na+ions possess a larger radius than Li+,resulting in slow diffusion dynamics in electrode materials,and thus seeking appropriate anode materials to meet high performance standards has become a trend in the field of SIBs.In this context,owing to the advantages of high theoretical capacity and proper redox potential,metal phosphides(MPs)are considered to be the promising materials to make up for the gap of SIBs anode materials.In this review,the recent development of MPs anode materials for SIBs is reviewed and analyzed comprehensively and deeply,including the synthesis method,advanced modification strategy,electrochemical performance,and Na storage mechanism.In addition,to promote the wide application of the emerg-ing MPs anodes for SIBs,several research emphases in the future are pointed out to overcome challenges toward the commercial application.展开更多
The interest for solid-state lithium metal(Li◦)batteries(SSLMBs)has been growing exponentially in recent years in view of their higher energy density and eliminated safety concerns.Solid polymer electrolytes(SPEs)are ...The interest for solid-state lithium metal(Li◦)batteries(SSLMBs)has been growing exponentially in recent years in view of their higher energy density and eliminated safety concerns.Solid polymer electrolytes(SPEs)are soft ionic conductors which can be easily processed into thin films at industrial level;these unique features confer solid-state Li◦polymer batteries(SSLMPBs,i.e.,SSLMBs utilizing SPEs as electrolytes)distinct advantages compared to SSLMBs containing other electrolytes.In this article,we briefly review recent progresses and achievements in SSLMPBs including the improvement of ionic conductivity of SPEs and their interfacial stability with Li◦anode.Moreover,we outline several advanced in-situ and ex-situ characterizing techniques which could assist in-depth understanding of the anode-electrolyte interphases in SSLMPBs.This article is hoped not only to update the state-of-the-art in the research on SSLMPBs but also to bring intriguing insights that could improve the fundamental properties(e.g.,transport,dendrite formation,and growth,etc.)and electrochemical performance of SSLMPBs.展开更多
Aqueous Zn-ion batteries(AZIBs)are regarded as a promising alternative to the widely used lithium-ion batteries in large-scale energy storage systems.The researches on the development of novel aqueous electrolyte to i...Aqueous Zn-ion batteries(AZIBs)are regarded as a promising alternative to the widely used lithium-ion batteries in large-scale energy storage systems.The researches on the development of novel aqueous electrolyte to improve battery performance have also attracted great interest since the electrolyte is a key com-ponent for Zn2+migration between cathode and anode.Herein,we briefly sum-marized and illuminated the recent development tendency of aqueous electrolyte for AZIBs,then deeply analyzed its existing issues(water decomposition,cathode dissolution,corrosion and passivation,and dendrite growth)and discussed the corresponding optimization strategies(pH regulation,concentrated salt solution,electrolyte composition design,and functional additives).The internal mecha-nisms of these strategies were further revealed and the relationships between issues and solutions were clarified,which could guide the future development of aqueous electrolytes for AZIBs.展开更多
The efficient electrocatalysis plays the key role in the development of electrochemical energy conversion technologies to alleviate energy crisis.Given their multiple active sites and large specific surface areas as e...The efficient electrocatalysis plays the key role in the development of electrochemical energy conversion technologies to alleviate energy crisis.Given their multiple active sites and large specific surface areas as electrocatalysts,metalorganic frameworks(MOFs)and their derivatives have attracted considerable interests in recent years.Specially,exploring the roles of the enhanced active sites inMOFs and their derivatives is significant for understanding and developing new effective electrocatalysts.Recently,the vital role of vacancies has been proven to promote electrocatalytic processes(such as H2 or O2 evolution reactions,O2 reduction reactions,and N2 reduction reactions).In order to in-depth exploring the effect of vacancies in electrocatalysts,the vacancies classification,synthetic strategy,and the recent development of various vacancies inMOFs and their derivatives for electrocatalysis are reviewed.Also,the perspectives on the challenges and opportunities of vacancies inMOFs and their derivatives for electrocatalysis are presented.展开更多
Biomass is rich,renewable,sustainable,and green resources,thereby excellent raw material for the fabrication of carbon materials.The diversity in structure and morphology of biomass are relevant in obtaining carbon ma...Biomass is rich,renewable,sustainable,and green resources,thereby excellent raw material for the fabrication of carbon materials.The diversity in structure and morphology of biomass are relevant in obtaining carbon materials with dif-ferent structures and performances.The inherent ordered porous structure of biomass also benefits the activation process to yield porous carbons with ultra-high specific surface area and pore volume.Besides,obtained biomass-derived carbons(BDCs)are hard carbon with porous morphology,stable structure,supe-rior hardness/strength,and good cycling performances when used in electro-chemical capacitors(ECs).The inherent N,S,P,and O elements in biomass yield naturally self-doped N,S,P,and O BDCs with unique intrinsic structures.In this paper,the synthesis approaches and applications of BDCs in ECs are reviewed.It shows that BDCs electrochemical performances are highly determined by their pore structures,specific surface areas,heteroatoms doping,graphitization degree,defects,and morphologies.The electrochemical performances of BDCs can further be improved by compositing with other materials,such as graphene,carbon nanofibers/nanotubes,transition metal oxides or hydroxides,and con-ducting polymers.The future challenges and outlooks of BDCs are also provided.展开更多
The closed pore has been considered as the key structure for Na ion storage in hard carbon.However,the traditional view is that closed pores can only be formed by the curling of graphite-like crystallites in the case ...The closed pore has been considered as the key structure for Na ion storage in hard carbon.However,the traditional view is that closed pores can only be formed by the curling of graphite-like crystallites in the case of high temperature carbonization.Ingenious designing of closed pore structures at lower temperature is still blank.Herein,for the first time,engineering the wall thickness and number of closed pores in waste rosewood-derived hard carbon was successfully achieved at a low temperature of 1100℃ by removing the lignin and hemicellulose components in wood precursor.When applied as an anode material,the optimum sample exhibits a high capacity of 326 mAh/g at 20 mA/g and a remarkable rate capability of 230mAh/g at 5000 mA/g,significantly higher than those of the untreated sample(only 33 mAh/g at 5000 mA/g).The significantly improved Na storage performance should be attributed to abundant closed pores that provide sufficient spaces forNa storage and thin porewall structure that is beneficial to the diffusion of Na^(+)in the bulk phase.This work provides a new idea for the future application of biomass-based hard carbon for advanced Na ion batteries.展开更多
While double perovskites of PrBaCo_(2)O_(6)(PBC)have been extensively developed as the cathodes for proton-conducting solid oxide fuel cells(H-SOFCs),the effects of Sr-or Ca-doping at the A site on the activity and st...While double perovskites of PrBaCo_(2)O_(6)(PBC)have been extensively developed as the cathodes for proton-conducting solid oxide fuel cells(H-SOFCs),the effects of Sr-or Ca-doping at the A site on the activity and stability of the oxygen reduction reaction are yet to be fully studied.Here,the effect of A-site doping on the oxygen reduction reaction activity and stability has been studied by evaluating the performance of both symmetrical and single cells.It is shown that Ca-doped PBC(PrBa_(0.8)Ca_(0.2)Co_(2)O_(6),PBCC)shows a slightly smaller polarization resistance(0.076Ωcm^(2))than that(0.085Ωcm^(2))of Sr-doped PBC(PrBa0.8Sr0.2Co2O6,PBSC)at 700◦C in wet air.Moreover,the degradation rate of PBCC is 0.0003Ωcm^(2)h^(−1)(0.3%h−1)in 100 h,about 1/10 of that of PBSC at 700◦C in wet air.In addition,it is also confirmed that single cells with PBCC cathode show higher peak power density(1.22Wcm^(−2)vs.1.08Wcm^(−2)at 650◦C)and better durability(degradation rate of 0.1%h^(−1)vs.0.13%h^(−1))than those with PBSC cathode.The distribution of relaxation time analyses suggests that the better stability of the PBCC electrode may come from the fast and stable surface oxygen exchange process in the medium frequency range of the electrochemical impedance spectrum.展开更多
As one of the most promising candidates for next-generation energy storage systems,lithium-sulfur(Li-S)batteries have gained wide attention owing to their ultrahigh theoretical energy density and low cost.Nevertheless...As one of the most promising candidates for next-generation energy storage systems,lithium-sulfur(Li-S)batteries have gained wide attention owing to their ultrahigh theoretical energy density and low cost.Nevertheless,their road to commercial application is still full of thorns due to the inherent sluggish redox kinetics and severe polysulfides shuttle.Incorporating sulfur cathodes with adsorbents/catalysts has been proposed to be an effective strategy to address the foregoing challenges,whereas the complexity of sulfur cathodes resulting from the intricate design parameters greatly influences the corresponding energy density,which has been frequently ignored.In this review,the recent progress in design strategies of advanced sulfur cathodes is summarized and the significance of compatible regulation among sulfur active materials,tailored hosts,and elaborate cathode configuration is clarified,aiming to bridge the gap between fundamental research and practical application of Li-S batteries.The representative strategies classified by sulfur encapsulation,host architecture,and cathode configuration are first highlighted to illustrate their synergetic contribution to the electrochemical performance improvement.Feasible integration principles are also proposed to guide the practical design of advanced sulfur cathodes.Finally,prospects and future directions are provided to realize high energy density and long-life Li-S batteries.展开更多
Thermoelectric sensors have attracted increasing attention in smart wearables due to the recognition of multiple signals in self-powered mode.However,present thermoelectric devices show disadvantages of low durability...Thermoelectric sensors have attracted increasing attention in smart wearables due to the recognition of multiple signals in self-powered mode.However,present thermoelectric devices show disadvantages of low durability,weak wearability,and complex preparation processes and are susceptible to moisture in the microenvironment of the human body,which hinders their further application in wearable electronics.Herein,we prepared a new thermoelectric fabric with thermoplastic polyurethane/carbon nanotubes(TPU/CNTs)by combining vacuum filtration and electrospraying techniques.Electrospraying TPU microsphere coating with good biocompatibility and environmental friendliness made the fabric worn directly and exhibits preferred water resistance,mechanical durability,and stability even after being bent 4000 times,stretched 1000 times,and washed 1000 times.Moreover,this fabric showed a Seebeck coefficient of 49μVK−1 and strain range of 250%and could collect signals well and avoided interference from moisture.Based on the biocompatibility and safety of the fabric,it can be fabricated into devices and mounted on the human face and elbow for long-term and continuous collection of data on the body’s motion and breathing simultaneously to provide collaborative support information.This thermoelectric fabric-based sensor will show great potential in advanced smart wearables for health monitoring,motion detection,and human–computer interaction.展开更多
The construction of high-efficiency photoanodes is essential for developing outstanding photoelectrochemical(PEC)water splitting cells.Furthermore,insufficient carrier transport capabilities and sluggish surface water...The construction of high-efficiency photoanodes is essential for developing outstanding photoelectrochemical(PEC)water splitting cells.Furthermore,insufficient carrier transport capabilities and sluggish surface water oxidation kinetics limit its application.Using a solvothermal annealing strategy,we prepared a nonstoichiometric In-S(NS)group on the surface of an In_(2)S_(3) photoanode in situ and unexpectedly formed a type II transfer path of carrier,thereby reducing the interfacial recombination and promoting the bulk separation.Firstprinciples calculations and comprehensive characterizations demonstrated NS group as an excellent oxygen evolution cocatalyst(OEC)that effectively facilitated carrier transport,lowered the surface overpotential,increased the surface active site,and accelerated the surface oxygen evolution reaction kinetics by precisely altering the rate-determining steps of*to*OH and*O to*OOH.These synergistic effects remarkably enhanced the PEC performance,with a high photocurrent density of 5.02 mA cm^(−2)at 1.23 V versus reversible hydrogen electrode and a negative shift in the onset potential by 310 mV.This work provides a new strategy for the in situ preparation of high-efficiency OECs and provides ideas for constructing excellent carrier transfer and transport channels.展开更多
The electrocatalytic synthesis of C-N coupling compounds from CO_(2) and nitrogenous species not only offers an effective avenue to achieve carbon neutral-ity and reduce environmental pollution,but also establishes a ...The electrocatalytic synthesis of C-N coupling compounds from CO_(2) and nitrogenous species not only offers an effective avenue to achieve carbon neutral-ity and reduce environmental pollution,but also establishes a route to synthesize valuable chemicals,such as urea,amide,and amine.This innovative approach expands the application range and product categories beyond simple carbona-ceous species in electrocatalytic CO_(2) reduction,which is becoming a rapidly advancing field.This review summarizes the research progress in electrocatalytic urea synthesis,using N_(2),NO_(2)^(-),and NO_(3)^(-)as nitrogenous species,and explores emerging trends in the electrosynthesis of amide and amine from CO_(2) and nitro-gen species.Additionally,the future opportunities in this field are highlighted,including electrosynthesis of amino acids and other compounds containing C-N bonds,anodic C-N coupling reactions beyond water oxidation,and the catalytic mechanism of corresponding reactions.This critical review also captures the insights aimed at accelerating the development of electrochemical C-N coupling reactions,confirming the superiority of this electrochemical method over the traditional techniques.展开更多
Zinc-based batteries are a very promising class of next-generation electrochemical energy storage systems,with high safety,eco-friendliness,abundant resources,and the absence of rigorous manufacturing conditions.Howev...Zinc-based batteries are a very promising class of next-generation electrochemical energy storage systems,with high safety,eco-friendliness,abundant resources,and the absence of rigorous manufacturing conditions.However,practical applications of zinc-based rechargeable batteries are impeded by the low Coulombic efficiency,inferior cyclability,and poor rate capability,due to the instability of zinc anode.Herein,effective strategies for dendritefree zinc anode are symmetrically reviewed,especially highlighting specific mechanisms,delicate design of electrode and current collectors,controlled electrode|electrolyte interface,ameliorative electrolytes,and advanced separators design.First,the particular mechanisms of dendrites formation and the associated fundamentals of the stable Zn metal anodes are presented elaborately.Then,recent key strategies for dendrites prevention and hydrogen evolution reaction suppression are categorized,discussed,and analyzed in detail in view of the electrodes,electrolytes,and separators.Finally,the challenging perspectives and major directions of stable zinc anodes are briefly discussed for further industrialization and commercialization of zinc-based rechargeable batteries.展开更多
Upgrading of atmospheric CO_(2) into high-value-added acetate using renewable electricity via electrocatalysis solely remains a great challenge.Here,inspired by microbial synthesis via biocatalysts,we present a couple...Upgrading of atmospheric CO_(2) into high-value-added acetate using renewable electricity via electrocatalysis solely remains a great challenge.Here,inspired by microbial synthesis via biocatalysts,we present a coupled system to produce acetate from CO_(2) by bridging inorganic electrocatalysis with microbial synthesis through formate intermediates.A 3D Bi_(2)O_(3)@CF integrated electrode with an ice-sugar gourd shape was fabricated via a straightforward hydrothermal synthesis strategy,wherein Bi_(2)O_(3) microspheres were decorated on carbon fibers.This ice-sugar gourd-shaped architecture endows electrodes with multiple structural advantages,including synergistic contribution,high mass transport capability,high structural stability,and large surface area.Consequently,the resultant Bi_(2)O_(3)@CF exhibited a maximum Faradic efficiency of 92.4%at−1.23 V versus Ag/AgCl for formate generation in 0.5 M KHCO_(3),exceeding that of Bi_(2)O_(3)/CF prepared using a conventional electrode preparation strategy.Benefiting from the high formate selectivity,unique architecture,and good biocompatibility,the Bi_(2)O_(3)@CF electrode attached with enriched CO_(2)-fixing electroautotrophs served as a biocathode.As a result,a considerable acetate yield rate of 0.269±0.009 g L^(−1) day^(−1)(a total acetate yield of 3.77±0.12 g L^(−1) during 14-day operation)was achieved in the electrochemical–microbial system equipped with Bi_(2)O_(3)@CF.展开更多
基金Foundation of National Natural Science Foundation of China,Grant/Award Number:51903145Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province of China,Grant/Award Number:2019JC-11Wang L.would like to thank the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University,Grant/Award Number:CX202053。
文摘High-frequency electromagnetic waves and electronic products can bring great convenience to people’s life,but lead to a series of electromagnetic interference(EMI)problems,such as great potential dangers to the normal operation of elec-tronic components and human safety.Therefore,the research of EMI shield-ing materials has attracted extensive attention by the scholars.Among them,polymer-based EMI shielding materials with light weight,high specific strength,and stable properties have become the current mainstream.The construction of 3D conductive networks has proved to be an effective method for the prepara-tion of polymer-based EMI shielding materials with excellent shielding effective-ness(SE).In this paper,the shielding mechanism of polymer-based EMI shield-ing materials with 3D conductive networks is briefly introduced,with emphasis on the preparation methods and latest research progress of polymer-based EMI shielding materials with different 3D conductive networks.The key scientific and technical problems to be solved in the field of polymer-based EMI shielding materials are also put forward.Finally,the development trend and application prospects of polymer-based EMI shielding materials are prospected.
基金NationalNatural Science Foundation ofChina,Grant/Award Numbers:21825501,21805161,21808121,U1801257NationalKeyResearch and Development Program,Grant/Award Numbers:2016YFA0202500,2016YFA0200102。
文摘Lithium ion battery has achieved great success in portable electronics and even recently electronic vehicles since its commercialization in 1990s.However,lithium-ion batteries are confronted with several issues in terms of the sustainable development such as the high price of raw materials and electronic products,the emerging safety accidents,etc.The recent progresses are herein emphasized on lithium batteries for energy storage to clearly understand the sustainable energy chemistry and emerging energymaterials.The Perspective presents novel lithium-ion batteries developed with the aims of enhancing the electrochemical performance and sustainability of energy storage systems.First,revolutionary material chemistries,including novel low-cobalt cathode,organic electrode,and aqueous electrolyte,are discussed.Then,the characteristics of safety performance are analyzed and strategies to enhance safety are subsequently evaluated.Battery recycling is considered as the key factor for a sustainable society and related technologies are present as well.Finally,conclusion and outlook are drawn to shed lights on the further development of sustainable lithium-ion batteries.
基金“Transformational Technologies for Clean Energy and Demonstration,”Strategic Priority Research Program of the Chi-nese Academy of Sciences,Grant/Award Number:XDA21070300the National Natural Science Foundation of China,Grant/Award Numbers:51772301,21773264,21905286the China Postdoc-toral Science Foundation,Grant/Award Numbers:2017LH028,2017M620913。
文摘Lithium-ion batteries(LIBs)are booming in multiple fields due to a rapid devel-opment in the last decade.However,limited by operational lifespans,a grow-ing number of spent LIBs reaching the end of their lives are consequently faced with serious accumulation and descended to hazardous waste.Without proper disposal,the spent LIBs will inevitably cause negative influence on the ecol-ogy and undermine the sustainable manufacture of LIBs.The initial research of recycling strategies mainly focused on the optimization of metallurgical pro-cesses.Recently,the sustainability of the recycling process has attracted much more attention and become an important factor.Here,we summarize the recent progress of the spent LIBs recycling from a sustainable perspective,especially discussing the green innovations in recycling strategies for spent LIBs.Through this article,we expect to reveal the challenges and developing tendency of the recycling strategies and provide a guideline for future researches on process-ing spent LIBs and beyond,like the recycling of the solid-state lithium metal batteries.
基金Beijing Municipal Natural Science Foundation(Z200011)National Key Research and Development Program(2021YFB2500300)National Natural Science Foundation of China(22179070,22075029,U1932220),the“Shuimu Tsinghua Scholar Program of Tsinghua University”,and Mercedes-Benz AG.Xiang-Qun Xu and Xin-Bing Cheng contributed equally to this work.
文摘High-energy-density lithium metal batteries(LMBs)are widely accepted as promising next-generation energy storage systems.However,the safety features of practical LMBs are rarely explored quantitatively.Herein,the thermal runaway behaviors of a 3.26 Ah(343 Wh kg^(−1))Li|LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2)pouch cell in the whole life cycle are quantitatively investigated by extended volume-accelerating rate calorimetry and differential scanning calorimetry.By thermal failure analyses on pristine cell with fresh Li metal,activated cell with once plated dendrites,and 20-cycled cell with large quantities of dendrites and dead Li,dendrite-accelerated thermal runaway mechanisms including reaction sequence and heat release contribution are reached.Suppressing dendrite growth and reducing the reactivity between Li metal anode and electrolyte at high temperature are effective strategies to enhance the safety performance of LMBs.These findings can largely enhance the understanding on the thermal runaway behaviors of Li metal pouch cells in practical working conditions.
文摘Lithium–sulfur(Li-S)batteries are promising next-generation energy storage systems with ultrahigh energy density.However,the intrinsic sluggish“solid–liquid–solid”reaction between S8 and Li2S causes unavoidable shuttling of polysulfides,severely limiting the practical energy density and cycling performance.Recently,the catalysis process has been introduced for the sulfur redox reaction to accelerate the conversion of polysulfides,providing a positive remedy for the polysulfides shuttling.Nevertheless,in-depth understanding of the catalyst evaluation criteria and catalytic mechanism still lies in the“black box”,and precise characterization technique is the key to unlock this puzzle.In this review,we provide a comprehensive overview of characterization techniques on the catalyst in Li-S batteries from two aspects of catalytic performance and catalytic mechanism,highlighting their significance and calling for more efforts to develop precise and fast techniques for Li-S catalysis.Moreover,we envision the future development of characterization for better understanding the catalysis toward practical Li-S battery.
基金National Science Fund for Distinguished Young Scholars,Grant/Award Number:52025133Tencent Foundation through the XPLORER PRIZE,China Postdoc-toral Science Foundation,Grant/Award Numbers:2019M650337,2020M670021+2 种基金Beijing Natural Science Foundation,Grant/Award Number:JQ18005National Key Research and Development Pro-gram of China,Grant/Award Number:2017YFA0206701Fund of the State Key Laboratory of Solidification Process-ing in NWPU,Grant/Award Number:SKLSP202004。
文摘Electrochemical water splitting for hydrogen production has sparked intensive interests because it provides a new approach for sustainable energy resources and the avoidance of environmental problems.The precious metal-based sin-gle atomic catalysts(PMSACs)have been widely employed in water splitting catalysis by virtue of their maximum atom utilization and unique electronic structure,which can reduce metal amounts and remain high catalytic perfor-mance simultaneously.In this review,we will summarize recent research efforts toward developing SACs based on precious metals with excellent performance for electrochemical water splitting catalysis.First,the synthesis strategies for PMSACs will be classified and introduced including high-temperature pyrolysis,electrochemical method,photochemical reduction,wet chemistry method,etc.Then,a short description of characterization techniques for SACs will be given,which mainly involves the aberration-corrected scanning-transmission electron microscopy(AC-STEM)and X-ray absorption spectroscopy(XAS).In particular,the relationship between the electronic structure of the precious metal atomic sites and performance for water splitting will be discussed according to the the-oretical and experimental results.Finally,a brief perspective will be provided to highlight the challenges and opportunities for the development of novel PMSACs suitable for electrochemical water splitting applications.
基金ThisworkwassupportedbyBeijingNaturalScienceFoun-dation(JQ20004)National Natural Science Foundation of China(22179070,U1801257,U1910202)Tsinghua-Toyota Joint Research Fund(20213930025).
文摘The pursuit of sustainable energy has a great request for advanced energy stor-age devices.Lithium metal batteries are regarded as a potential electrochemi-cal storage system because of the extremely high capacity and the most nega-tive electrochemical potential of lithium metal anode.Dead lithium formed in the stripping process significantly contributes to the low efficiency and short lifespan of rechargeable lithium metal batteries.This review displays a critical review on the current research status about the stripping electrochemistry of lithium metal anode.The significance of stripping process to a robust lithium metal anode is emphasized.The stripping models in different electrochemical scenarios are discussed.Specific attention is paid to the understanding for the electrochemical principles of atom diffusion,electrochemical reaction,ion dif-fusion in solid electrolyte interphase(SEI),and electron transfer with the pur-pose to strengthen the insights into the behavior of lithium electrode stripping.The factors affecting stripping processes and corresponding solutions are sum-marized and categorized as follows:surface physics,SEI,operational and exter-nal factors.This review affords fresh insights to explore the lithium anode and design robust lithium metal batteries based on the comprehensive understand-ing of the stripping electrochemistry.
基金National Natural Science Founda-tion of China,Grant/Award Numbers:51925207,U1910210,51872277,51972067,51802044,51902062,51802043Funda-mental Research Funds for the Central Universities,Grant/Award Number:WK2060140026+2 种基金the DNL cooperation Fund,CAS,Grant/Award Number:DNL180310National Synchrotron Radi-ation Laboratory,Grant/Award Num-ber:KY2060000173Guangdong Nat-ural Science Funds for Distinguished Young Scholar,Grant/Award Number:2019B151502039。
文摘Sodium-ion batteries(SIBs)have been extensively studied as the potential alter-native to lithium-ion batteries(LIBs)due to the abundant natural reserves and low price of sodium resources.Nevertheless,Na+ions possess a larger radius than Li+,resulting in slow diffusion dynamics in electrode materials,and thus seeking appropriate anode materials to meet high performance standards has become a trend in the field of SIBs.In this context,owing to the advantages of high theoretical capacity and proper redox potential,metal phosphides(MPs)are considered to be the promising materials to make up for the gap of SIBs anode materials.In this review,the recent development of MPs anode materials for SIBs is reviewed and analyzed comprehensively and deeply,including the synthesis method,advanced modification strategy,electrochemical performance,and Na storage mechanism.In addition,to promote the wide application of the emerg-ing MPs anodes for SIBs,several research emphases in the future are pointed out to overcome challenges toward the commercial application.
基金NationalNatural Science Foundation of China,Grant/Award Numbers:51773092,21975124Research Foundation of Material-orientedChemicalEngineering StateKey Lab,Grant/Award Number:ZK201717+1 种基金FundamentalResearch Funds for the CentralUniversities,Grant/Award Number:2020kfyXJJS095Spanish Government,Grant/Award Number:MINECO RETOS/RTI2018-098301-B-I00。
文摘The interest for solid-state lithium metal(Li◦)batteries(SSLMBs)has been growing exponentially in recent years in view of their higher energy density and eliminated safety concerns.Solid polymer electrolytes(SPEs)are soft ionic conductors which can be easily processed into thin films at industrial level;these unique features confer solid-state Li◦polymer batteries(SSLMPBs,i.e.,SSLMBs utilizing SPEs as electrolytes)distinct advantages compared to SSLMBs containing other electrolytes.In this article,we briefly review recent progresses and achievements in SSLMPBs including the improvement of ionic conductivity of SPEs and their interfacial stability with Li◦anode.Moreover,we outline several advanced in-situ and ex-situ characterizing techniques which could assist in-depth understanding of the anode-electrolyte interphases in SSLMPBs.This article is hoped not only to update the state-of-the-art in the research on SSLMPBs but also to bring intriguing insights that could improve the fundamental properties(e.g.,transport,dendrite formation,and growth,etc.)and electrochemical performance of SSLMPBs.
基金the National Nature Science Foundation of China,Grant/Award Numbers:21975289,U19A2019Hunan Provincial Research and Development Plan in Key Areas,Grant/Award Number:2019GK2033Hunan Provincial Science and Technology Plan Project of China,Grant/Award Num-bers:2017TP1001,2020JJ2042,2018RS3009。
文摘Aqueous Zn-ion batteries(AZIBs)are regarded as a promising alternative to the widely used lithium-ion batteries in large-scale energy storage systems.The researches on the development of novel aqueous electrolyte to improve battery performance have also attracted great interest since the electrolyte is a key com-ponent for Zn2+migration between cathode and anode.Herein,we briefly sum-marized and illuminated the recent development tendency of aqueous electrolyte for AZIBs,then deeply analyzed its existing issues(water decomposition,cathode dissolution,corrosion and passivation,and dendrite growth)and discussed the corresponding optimization strategies(pH regulation,concentrated salt solution,electrolyte composition design,and functional additives).The internal mecha-nisms of these strategies were further revealed and the relationships between issues and solutions were clarified,which could guide the future development of aqueous electrolytes for AZIBs.
基金Natural Science Foundation of ZhejiangProvince,Grant/Award Number:LY19E020007CityUniversity ofHongKong,111 Project,Grant/Award Number:D20015。
文摘The efficient electrocatalysis plays the key role in the development of electrochemical energy conversion technologies to alleviate energy crisis.Given their multiple active sites and large specific surface areas as electrocatalysts,metalorganic frameworks(MOFs)and their derivatives have attracted considerable interests in recent years.Specially,exploring the roles of the enhanced active sites inMOFs and their derivatives is significant for understanding and developing new effective electrocatalysts.Recently,the vital role of vacancies has been proven to promote electrocatalytic processes(such as H2 or O2 evolution reactions,O2 reduction reactions,and N2 reduction reactions).In order to in-depth exploring the effect of vacancies in electrocatalysts,the vacancies classification,synthetic strategy,and the recent development of various vacancies inMOFs and their derivatives for electrocatalysis are reviewed.Also,the perspectives on the challenges and opportunities of vacancies inMOFs and their derivatives for electrocatalysis are presented.
基金National Natural Science Founda-tion of China,Grant/Award Numbers:52062012,51525206,520105010,21603048Key Science&Technology Project of Hainan Province,Grant/Award Number:ZDYF2020028。
文摘Biomass is rich,renewable,sustainable,and green resources,thereby excellent raw material for the fabrication of carbon materials.The diversity in structure and morphology of biomass are relevant in obtaining carbon materials with dif-ferent structures and performances.The inherent ordered porous structure of biomass also benefits the activation process to yield porous carbons with ultra-high specific surface area and pore volume.Besides,obtained biomass-derived carbons(BDCs)are hard carbon with porous morphology,stable structure,supe-rior hardness/strength,and good cycling performances when used in electro-chemical capacitors(ECs).The inherent N,S,P,and O elements in biomass yield naturally self-doped N,S,P,and O BDCs with unique intrinsic structures.In this paper,the synthesis approaches and applications of BDCs in ECs are reviewed.It shows that BDCs electrochemical performances are highly determined by their pore structures,specific surface areas,heteroatoms doping,graphitization degree,defects,and morphologies.The electrochemical performances of BDCs can further be improved by compositing with other materials,such as graphene,carbon nanofibers/nanotubes,transition metal oxides or hydroxides,and con-ducting polymers.The future challenges and outlooks of BDCs are also provided.
基金National Nature Science Foundation of China,Grant/Award Numbers:21905306,21975289,22005199,U19A2019Hunan Province Natural Science Foundation,Grant/Award Number:2020JJ5694+2 种基金Hunan Provincial Science and Technology Plan Project of China,Grant/Award Numbers:2017TP1001,2020JJ2042Open sharing Fund for the Large-scale Instrument and Equipmnets of Central South Univerisity,Grant/Award Number:CSUZCC202112Fundamental Research Funds for the Central South University,Grant/Award Numbers:2020zzts060,2021zzts0531。
文摘The closed pore has been considered as the key structure for Na ion storage in hard carbon.However,the traditional view is that closed pores can only be formed by the curling of graphite-like crystallites in the case of high temperature carbonization.Ingenious designing of closed pore structures at lower temperature is still blank.Herein,for the first time,engineering the wall thickness and number of closed pores in waste rosewood-derived hard carbon was successfully achieved at a low temperature of 1100℃ by removing the lignin and hemicellulose components in wood precursor.When applied as an anode material,the optimum sample exhibits a high capacity of 326 mAh/g at 20 mA/g and a remarkable rate capability of 230mAh/g at 5000 mA/g,significantly higher than those of the untreated sample(only 33 mAh/g at 5000 mA/g).The significantly improved Na storage performance should be attributed to abundant closed pores that provide sufficient spaces forNa storage and thin porewall structure that is beneficial to the diffusion of Na^(+)in the bulk phase.This work provides a new idea for the future application of biomass-based hard carbon for advanced Na ion batteries.
基金Natural Science Foundation of Guangdong Province,Grant/Award Number:2021A1515010395Fundamental Research Funds for the Central Universities,Grant/Award Number:2022ZYGXZR002+2 种基金National Natural Science Foundation of China,Grant/Award Numbers:22179039,22005105Pearl River Talent Recruitment Program,Grant/Award Number:2019QN01C693Guangdong Innovative and Entrepreneurial Research Team Program,Grant/Award Number:2021ZT09L392。
文摘While double perovskites of PrBaCo_(2)O_(6)(PBC)have been extensively developed as the cathodes for proton-conducting solid oxide fuel cells(H-SOFCs),the effects of Sr-or Ca-doping at the A site on the activity and stability of the oxygen reduction reaction are yet to be fully studied.Here,the effect of A-site doping on the oxygen reduction reaction activity and stability has been studied by evaluating the performance of both symmetrical and single cells.It is shown that Ca-doped PBC(PrBa_(0.8)Ca_(0.2)Co_(2)O_(6),PBCC)shows a slightly smaller polarization resistance(0.076Ωcm^(2))than that(0.085Ωcm^(2))of Sr-doped PBC(PrBa0.8Sr0.2Co2O6,PBSC)at 700◦C in wet air.Moreover,the degradation rate of PBCC is 0.0003Ωcm^(2)h^(−1)(0.3%h−1)in 100 h,about 1/10 of that of PBSC at 700◦C in wet air.In addition,it is also confirmed that single cells with PBCC cathode show higher peak power density(1.22Wcm^(−2)vs.1.08Wcm^(−2)at 650◦C)and better durability(degradation rate of 0.1%h^(−1)vs.0.13%h^(−1))than those with PBSC cathode.The distribution of relaxation time analyses suggests that the better stability of the PBCC electrode may come from the fast and stable surface oxygen exchange process in the medium frequency range of the electrochemical impedance spectrum.
基金NationalNatural Science Foundation of China,Grant/Award Numbers:11905154,51972219Natural Science Foundation of the Jiangsu Higher Education Institutions ofChina,Grant/Award Number:19KJA550004+1 种基金Natural Science Foundation of Jiangsu Province,Grant/Award Number:BK20190814the 111 project。
文摘As one of the most promising candidates for next-generation energy storage systems,lithium-sulfur(Li-S)batteries have gained wide attention owing to their ultrahigh theoretical energy density and low cost.Nevertheless,their road to commercial application is still full of thorns due to the inherent sluggish redox kinetics and severe polysulfides shuttle.Incorporating sulfur cathodes with adsorbents/catalysts has been proposed to be an effective strategy to address the foregoing challenges,whereas the complexity of sulfur cathodes resulting from the intricate design parameters greatly influences the corresponding energy density,which has been frequently ignored.In this review,the recent progress in design strategies of advanced sulfur cathodes is summarized and the significance of compatible regulation among sulfur active materials,tailored hosts,and elaborate cathode configuration is clarified,aiming to bridge the gap between fundamental research and practical application of Li-S batteries.The representative strategies classified by sulfur encapsulation,host architecture,and cathode configuration are first highlighted to illustrate their synergetic contribution to the electrochemical performance improvement.Feasible integration principles are also proposed to guide the practical design of advanced sulfur cathodes.Finally,prospects and future directions are provided to realize high energy density and long-life Li-S batteries.
基金National Natural Science Foundation of China,Grant/Award Numbers:51973027,52003044Fundamental Research Funds for the Central Universities,Grant/Award Numbers:2232023A-05,2232020A-08+5 种基金International Cooperation Fund of Science and Technology Commission of Shanghai Municipality,Grant/Award Number:21130750100Major Scientific and Technological Innovation Projects of Shandong Province,Grant/Award Number:2021CXGC011004Chang Jiang Scholars Program and the Innovation Program of Shanghai Municipal Education Commission,Grant/Award Number:2019-01-07-00-03-E00023State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,Grant/Award Number:KF2216DHU Distinguished Young Professor ProgramCentral Universities and Graduate Student Innovation Fund of Donghua University,Grant/Award Number:CUSF-DH-D-2022040。
文摘Thermoelectric sensors have attracted increasing attention in smart wearables due to the recognition of multiple signals in self-powered mode.However,present thermoelectric devices show disadvantages of low durability,weak wearability,and complex preparation processes and are susceptible to moisture in the microenvironment of the human body,which hinders their further application in wearable electronics.Herein,we prepared a new thermoelectric fabric with thermoplastic polyurethane/carbon nanotubes(TPU/CNTs)by combining vacuum filtration and electrospraying techniques.Electrospraying TPU microsphere coating with good biocompatibility and environmental friendliness made the fabric worn directly and exhibits preferred water resistance,mechanical durability,and stability even after being bent 4000 times,stretched 1000 times,and washed 1000 times.Moreover,this fabric showed a Seebeck coefficient of 49μVK−1 and strain range of 250%and could collect signals well and avoided interference from moisture.Based on the biocompatibility and safety of the fabric,it can be fabricated into devices and mounted on the human face and elbow for long-term and continuous collection of data on the body’s motion and breathing simultaneously to provide collaborative support information.This thermoelectric fabric-based sensor will show great potential in advanced smart wearables for health monitoring,motion detection,and human–computer interaction.
基金National Key Research and Development Program of China,Grant/Award Number:2021YFA1500800National Natural Science Foundation of China,Grant/Award Numbers:52025028,52202272Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘The construction of high-efficiency photoanodes is essential for developing outstanding photoelectrochemical(PEC)water splitting cells.Furthermore,insufficient carrier transport capabilities and sluggish surface water oxidation kinetics limit its application.Using a solvothermal annealing strategy,we prepared a nonstoichiometric In-S(NS)group on the surface of an In_(2)S_(3) photoanode in situ and unexpectedly formed a type II transfer path of carrier,thereby reducing the interfacial recombination and promoting the bulk separation.Firstprinciples calculations and comprehensive characterizations demonstrated NS group as an excellent oxygen evolution cocatalyst(OEC)that effectively facilitated carrier transport,lowered the surface overpotential,increased the surface active site,and accelerated the surface oxygen evolution reaction kinetics by precisely altering the rate-determining steps of*to*OH and*O to*OOH.These synergistic effects remarkably enhanced the PEC performance,with a high photocurrent density of 5.02 mA cm^(−2)at 1.23 V versus reversible hydrogen electrode and a negative shift in the onset potential by 310 mV.This work provides a new strategy for the in situ preparation of high-efficiency OECs and provides ideas for constructing excellent carrier transfer and transport channels.
基金National Natural Science Foundation of China,Grant/Award Numbers:42277485,21976141,22272197,22102184,22102136,U22A20392Natural Science Foundation of Hubei Province,Grant/Award Numbers:2022CFB1001,2021CFA034+1 种基金Department of Education of Hubei Province,Grant/Award Numbers:Q20221701,Q20221704Joint Fund of Yulin University and Dalian National Laboratory for Clean Energy,Grant/Award Number:YLU-DNL Fund 2022008。
文摘The electrocatalytic synthesis of C-N coupling compounds from CO_(2) and nitrogenous species not only offers an effective avenue to achieve carbon neutral-ity and reduce environmental pollution,but also establishes a route to synthesize valuable chemicals,such as urea,amide,and amine.This innovative approach expands the application range and product categories beyond simple carbona-ceous species in electrocatalytic CO_(2) reduction,which is becoming a rapidly advancing field.This review summarizes the research progress in electrocatalytic urea synthesis,using N_(2),NO_(2)^(-),and NO_(3)^(-)as nitrogenous species,and explores emerging trends in the electrosynthesis of amide and amine from CO_(2) and nitro-gen species.Additionally,the future opportunities in this field are highlighted,including electrosynthesis of amino acids and other compounds containing C-N bonds,anodic C-N coupling reactions beyond water oxidation,and the catalytic mechanism of corresponding reactions.This critical review also captures the insights aimed at accelerating the development of electrochemical C-N coupling reactions,confirming the superiority of this electrochemical method over the traditional techniques.
基金The National Natural Science Foundation of China,Grant/Award Numbers:22125903,51872283,22209173The National Key R&D Program of China,Grant/Award Number:2022YFA1504100+5 种基金The“Transformational Technologies for Clean Energy and Demonstration”Strategic Priority Research Program of the Chinese Academy of Sciences,Grant/Award Number:XDA21000000Dalian Innovation Support Plan for High Level Talents,Grant/Award Number:2019RT09Dalian National Laboratory For Clean Energy(DNL),CAS,DNL Cooperation Fund,CAS,Grant/Award Numbers:DNL202016,DNL202019DICP,Grant/Award Number:DICP I2020032The Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy,Grant/Award Numbers:YLU-DNL Fund 2021002,YLU-DNL Fund 2021009China Postdoctoral Science Foundation,Grant/Award Number:2021M703138。
文摘Zinc-based batteries are a very promising class of next-generation electrochemical energy storage systems,with high safety,eco-friendliness,abundant resources,and the absence of rigorous manufacturing conditions.However,practical applications of zinc-based rechargeable batteries are impeded by the low Coulombic efficiency,inferior cyclability,and poor rate capability,due to the instability of zinc anode.Herein,effective strategies for dendritefree zinc anode are symmetrically reviewed,especially highlighting specific mechanisms,delicate design of electrode and current collectors,controlled electrode|electrolyte interface,ameliorative electrolytes,and advanced separators design.First,the particular mechanisms of dendrites formation and the associated fundamentals of the stable Zn metal anodes are presented elaborately.Then,recent key strategies for dendrites prevention and hydrogen evolution reaction suppression are categorized,discussed,and analyzed in detail in view of the electrodes,electrolytes,and separators.Finally,the challenging perspectives and major directions of stable zinc anodes are briefly discussed for further industrialization and commercialization of zinc-based rechargeable batteries.
基金National Key Research and Development Program of China,Grant/Award Number:2018YFA0901300National Natural Science Foundation of China,Grant/Award Numbers:21975124,52173173,21603209+1 种基金the Natural Science Foundation of Jiangsu Province,Grant/Award Numbers:BK20220051,BK20220002Jiangsu Province Carbon Peak and Neutrality Innovation Program,Grant/Award Numbers:BE2022002-3,BE2022031-4。
文摘Upgrading of atmospheric CO_(2) into high-value-added acetate using renewable electricity via electrocatalysis solely remains a great challenge.Here,inspired by microbial synthesis via biocatalysts,we present a coupled system to produce acetate from CO_(2) by bridging inorganic electrocatalysis with microbial synthesis through formate intermediates.A 3D Bi_(2)O_(3)@CF integrated electrode with an ice-sugar gourd shape was fabricated via a straightforward hydrothermal synthesis strategy,wherein Bi_(2)O_(3) microspheres were decorated on carbon fibers.This ice-sugar gourd-shaped architecture endows electrodes with multiple structural advantages,including synergistic contribution,high mass transport capability,high structural stability,and large surface area.Consequently,the resultant Bi_(2)O_(3)@CF exhibited a maximum Faradic efficiency of 92.4%at−1.23 V versus Ag/AgCl for formate generation in 0.5 M KHCO_(3),exceeding that of Bi_(2)O_(3)/CF prepared using a conventional electrode preparation strategy.Benefiting from the high formate selectivity,unique architecture,and good biocompatibility,the Bi_(2)O_(3)@CF electrode attached with enriched CO_(2)-fixing electroautotrophs served as a biocathode.As a result,a considerable acetate yield rate of 0.269±0.009 g L^(−1) day^(−1)(a total acetate yield of 3.77±0.12 g L^(−1) during 14-day operation)was achieved in the electrochemical–microbial system equipped with Bi_(2)O_(3)@CF.