期刊文献+

为您找到了以下期刊:

共找到185篇文章
< 1 2 10 >
每页显示 20 50 100
Study on Fuzzy Self-Adaptive PID Control System of Biomass Boiler Drum Water 被引量:8
1
作者 Junran Jin Hengshuo Huang +1 位作者 Junman Sun Yongchao Pang journal of sustainable bioenergy systems 2013年第1期93-98,共6页
The paper discusses the features of the Biomass Boiler drum water level. Conventional PID Control System can not reach a satisfaction result in nonlinearity and time different from Biomass Boiler Drum Water Control Sy... The paper discusses the features of the Biomass Boiler drum water level. Conventional PID Control System can not reach a satisfaction result in nonlinearity and time different from Biomass Boiler Drum Water Control System. In this study, a kind of fuzzy self-adaptive PID controller is described and this controller is used in biomass boiler’s drum water level control system. Using the simulink tool of MATLAB simulation software to simulate the fuzzy adaptive PID and conventional PID control system, the result of the comparison shows that the fuzzy self-adaptive PID has the strong anti-jamming, flexibility and adaptability as well as the higher control precision in Biomass Boiler Drum Water. 展开更多
关键词 BIOMASS BOILER FUZZY ADAPTIVE PID FUZZY Control
下载PDF
Formulation of Motor Oil from Blends of Rubber Latex Cup Bottom Oil (RLBO) and Used Frying Oil (UFO)
2
作者 Konan Edmond Kouassi Abollé Abolle +3 位作者 Dogafolô Soro Tindo Sylvie Konan David Boa Kouassi Benjamin Yao journal of sustainable bioenergy systems 2024年第3期35-43,共9页
Most motor oils are made from mineral oils derived from petroleum, the reserves of which are limited and exhaustible. The aim of this study is to produce and characterize motor oil formulations based on mixtures of ru... Most motor oils are made from mineral oils derived from petroleum, the reserves of which are limited and exhaustible. The aim of this study is to produce and characterize motor oil formulations based on mixtures of rubber latex cup bottom oil (RLCBO) and used frying oil (UFO). The results show that these formulations have a density between 0.91 and 0.92. These densities evolve linearly with the proportion of cup bottom oil and temperature. Similarly, the kinematic viscosity of the blends follows an exponential relationship with temperature. By plotting the logarithm of these kinematic viscosities against the inverse of the temperature, we were able to determine the activation energy of the various blends and deduce that the formulations behave Newtonian. 展开更多
关键词 FORMULATION Oils Blend Motor Oils Latex Bottoms Oil
下载PDF
Physicochemical and Thermal Properties of Some Key Tropical Sawdust Woods for Energy Production
3
作者 Davy Fiwa Kaoke Yann Le Brech +2 位作者 Emmanuel Talla Anthony Dufour Patrick Mountapmbeme Kouotou journal of sustainable bioenergy systems 2024年第1期1-22,共22页
In South Saharan countries, 85% of the population uses biomass as a primary energy source. Cameroon presents one of the highest biomass energy and sawmills produce important sawdust resources which are not used and ar... In South Saharan countries, 85% of the population uses biomass as a primary energy source. Cameroon presents one of the highest biomass energy and sawmills produce important sawdust resources which are not used and are burnt in piles leading to significant air toxic emissions. Therefore, we have to valorize industrially these available sawdusts. This study focuses on the physicochemical and thermochemical analysis of Ayous, Sapelli and Tali sawdust. The proximate and ultimate analysis, particle size, structural composition, as well as heavy metal content and calorific value were determined. In addition, the thermogravimetric mass losses were also estimated. The results showed that high water contents (24% - 41%) were recorded in the raw sawdust, and the thermal treatment reduced these contents from 78% to values in the range of 4% - 9%. The values for ash and volatile matter content were respectively between 0.25% - 0.74% and 68% - 76%. The LHV is higher in Ayous (17.5 MJ/kg) and Sapelli (16.8 MJ/kg) than that of Tali (15.7 MJ/kg). The concentration of heavy metals is very low in each species. Extractives are more present in Tali (16.06%) than in the other sawdusts. Pyrolysis of sawdust shows the typical decomposition of hemicellulose (270˚C - 325˚C), cellulose (325˚C - 400˚C) and lignin (200˚C - 550˚C) with a maximum loss of 75% at 370˚C and the melting point is 320˚C. The results of the sawdust parameters determined in the paper can be valorized to reduce pollutants emissions by developing the efficiency and effectiveness of biomass energy processes and promoting the use of biomass as a sustainable alternative to traditional fossil fuels. 展开更多
关键词 Wood SAWMILLS SAWDUST Combustion Energy
下载PDF
Camalote Grass (Paspalum fasciculatum Willd) as a Sustainable Raw Material for the Production of Lignocellulosic Ethanol
4
作者 María Luz May-Reyes Cintya Valerio-Cárdenas +3 位作者 Gloria Ivette Bolio-López Manuel Mateo Hernández-Villegas Miguel Ángel Velázquez-Carmona Patricia De la Cruz-Burelo journal of sustainable bioenergy systems 2024年第2期23-33,共11页
The current trend of replacing a percentage of gasoline with ethanol has promoted the development of new processes for its production from lignocellulosic biomass. This work reports the production of ethanol from the ... The current trend of replacing a percentage of gasoline with ethanol has promoted the development of new processes for its production from lignocellulosic biomass. This work reports the production of ethanol from the Camalote grass (Paspalum fasciculatum Willd). The lignocellulosic biomass was subjected to acid hydrolysis at 125C and 15 psi with H2SO4 concentrations at 5%, 10%, and 20%, obtaining an average of reducing sugars (pentoses and hexoses) from the hydrolyzed juice with 12.3%, 10%, and 17% Brix, respectively. The sugars were fermented using yeast of the Saccharomyces cerevisiae at 30C for 48 hours. Finally, the ethanol was distilled at 78C, and the average yields were obtained through analysis of variance with a 95% confidence level. The values indicate that there is a significant difference (p > 0.05), the Tukey study shows that all the % v/v averages are different from each other. For H2SO4 concentration at 5% (10.33 ± 2), H2SO4 at 10% (9.33 ± 1.8), and H2SO4 at 20% (6.33 ± 2). The acidity analysis for the ethanol obtained from each treatment gave a value of 1.8 mg/L of acetic acid in all cases. 展开更多
关键词 Lignocellulosic Ethanol Lignocellulosic Biomass Camalote Grass Acid Hydrolysis Energy Crops
下载PDF
Thermogravimetric Analysis of Swine Manure Solids Obtained from Farrowing, and Growing-Finishing Farms 被引量:4
5
作者 Mahmoud Sharara Samy Sadaka journal of sustainable bioenergy systems 2014年第1期75-86,共12页
The modern trend of increasing the number of pigs at production sites led to a noticeable surplus of manure. Separation of manure solids provides an avenue of their utility via thermochemical conversion techniques. Th... The modern trend of increasing the number of pigs at production sites led to a noticeable surplus of manure. Separation of manure solids provides an avenue of their utility via thermochemical conversion techniques. Therefore, the goal of this paper was to assess the physical and thermal properties of solid separated swine manure obtained from two different farms, i.e., farrowing, and growing-finishing, and to determine their pyrolysis kinetic parameters. Swine manure solids were dried and milled prior to assessing their properties. Differential and integral isoconversional methods (Friedman, and Flynn-Wall-Ozawa) were used to determine the apparent activation energy as a function of the conversion ratio. Significant differences were observed in the proximate, ultimate composition between both manure types. The higher heating value (HHV) for the manure solids from farrowing, and growing-finishing farms reached 16.6 MJ/kg and 19.4 MJ/kg, respectively. The apparent activation energy computed using Friedman and FWO methods increased with the increase in the degree of conversion. Between 10% and 40% degrees of conversion, the average activation energies, using Friedman method, were103 and 116 kJ/mol for the farrowing and growing-finishing manure solids, respectively. On the other hand, the same activation energies, calculated from FWO method, were 98 and 104 kJ/mol, for solid manure obtained from farrowing and growing-finishing farms, respectively. The findings in this study will assist in the effort to optimize thermochemical conversion processes to accommodate swine waste. This could, in turn, minimize swine production impacts on the surrounding ecologies and provide sustainable energy and biochar streams. 展开更多
关键词 MANURE SOLIDS THERMOGRAVIMETRIC Analysis PYROLYSIS Isoconversional Methods
下载PDF
Microalgae Cultivation Using Offshore Membrane Enclosures for Growing Algae (OMEGA) 被引量:4
6
作者 Patrick Wiley Linden Harris +15 位作者 Sigrid Reinsch Sasha Tozzi Tsegereda Embaye Kit Clark Brandi McKuin Zbigniew Kolber Russel Adams Hiromi Kagawa Tra-My Justine Richardson John Malinowski Colin Beal Matthew A. Claxton Emil Geiger Jon Rask J. Elliot Campbell Jonathan D. Trent journal of sustainable bioenergy systems 2013年第1期18-32,共15页
OMEGA is a system for cultivating microalgae using wastewater contained in floating photobioreactors (PBRs) deployed in marine environments and thereby eliminating competition with agriculture for water, fertilizer, a... OMEGA is a system for cultivating microalgae using wastewater contained in floating photobioreactors (PBRs) deployed in marine environments and thereby eliminating competition with agriculture for water, fertilizer, and land. The offshore placement in protected bays near coastal cities co-locates OMEGA with wastewater outfalls and sources of CO2-rich flue gas on shore. To evaluate the feasibility of OMEGA, microalgae were grown on secondary-treated wastewater supplemented with simulated flue gas (8.5% CO2 V/V) in a 110-liter prototype system tested using a seawater tank. The flow-through system consisted of tubular PBRs made of transparent linear low-density polyethylene, a gas exchange and harvesting column (GEHC), two pumps, and an instrumentation and control (I&C) system. The PBRs contained regularly spaced swirl vanes to create helical flow and mixing for the circulating culture. About 5% of the culture volume was continuously diverted through the GEHC to manage dissolved oxygen concentrations, provide supplemental CO2, harvest microalgae from a settling chamber, and add fresh wastewater to replenish nutrients. The I&C system controlled CO2 injection and recorded dissolved oxygen levels, totalized CO2 flow, temperature, circulation rates, photosynthetic active radiation (PAR), and the photosynthetic efficiency as determined by fast repetition rate fluorometry. In two experimental trials, totaling 23 days in April and May 2012, microalgae productivity averaged 14.1 ± 1.3 grams of dry biomass per square meter of PBR surface area per day (n = 16), supplemental CO2 was converted to biomass with >50% efficiency, and >90% of the ammonia-nitrogen was recovered from secondary effluent. If OMEGA can be optimized for energy efficiency and scaled up economically, it has the potential to contribute significantly to biofuels production and wastewater treatment. 展开更多
关键词 Biofuels Wastewater Treatment MICROALGAE PHOTOBIOREACTOR CO2 Mass Transfer Fast REPETITION Rate FLUOROMETRY Instrumentation and Control
下载PDF
Biodiesel Production from <i>Spirulina-Platensis</i>Microalgae by <i>In-Situ</i>Transesterification Process 被引量:3
7
作者 H. I. El-Shimi Nahed K. Attia +1 位作者 S. T. El-Sheltawy G. I. El-Diwani journal of sustainable bioenergy systems 2013年第3期224-233,共10页
This research investigates the effect of reaction variables that strongly affect the cost of biodiesel production from non-edible Spirulina-Platensis microalgae lipids, and use the acid-catalyzed in situ transesterifi... This research investigates the effect of reaction variables that strongly affect the cost of biodiesel production from non-edible Spirulina-Platensis microalgae lipids, and use the acid-catalyzed in situ transesterification process. Experiments were designed to determine how variations in volume of reacting methanol, the concentration of an acid catalyst, time, temperature and stirring affected the biodiesel yield. The total lipid content of Spirulina-Platensis microalgae was obtained to be 0.1095g/g biomass. The weight of the by-product glycerol obtained was used to predict the percentage yield conversion of microalgae oil biodiesel. Best results (84.7%), a yield of fatty acid methyl ester (FAME), were obtained at 100% (wt./wt.oil) catalyst concentration, 80 ml methanol volumes, 8 h reaction time and 65℃ reaction temperature with continuous stirring at 650 rpm. Properties of the produced biodiesel were measured according to EN 14214 standards. 展开更多
关键词 BIODIESEL Spirulina-Platensis MICROALGAE IN-SITU TRANSESTERIFICATION
下载PDF
Enhancement of Power Generation in Microbial Fuel Cells through Supplementation of <i>Platycodon grandiflorum</i>in Doraji Roots 被引量:2
8
作者 Jung-In Park Hyunjin Kim +7 位作者 Dae Kyung Go Peter S. Park Sang Heon Lee Min Jung Koh Jonathan Jo Donghoon Lee Seungshin Lee Paul S. Chung journal of sustainable bioenergy systems 2019年第4期169-178,共10页
The current study reports the evidence of enhancement in power generation from cellulosic biomass in microbial fuel cell (MFC) systems by supplementing dried Doraji (Platycodon grandiflorum) roots powder. Mediator-les... The current study reports the evidence of enhancement in power generation from cellulosic biomass in microbial fuel cell (MFC) systems by supplementing dried Doraji (Platycodon grandiflorum) roots powder. Mediator-less two chamber H-type MFCs were prepared using rumen fluid as anode inocula to convert finely ground pine tree (Avicel) at 2% (w/v) to electricity. Dried Doraji roots were ground to pass 1 mm sieve and added to the anode of MFC at 0.1% w/v dosage for treatment. MFC power and current across an external resistor were measured daily for 10 d. At the end of incubation on d10, collected gases were measured for total gas volume and analyzed for gas composition on gas chromatography. Supplementation of Doraji roots powder to MFC anode chamber increased power generation and CO2 production. Over the 10d experimental period, power density normalized to anode surface area were between 17.0 and 37.7 with average of 32.5 mW/m2 in Doraji MFCs, and between 16.8 and 19.8 with average of 18.2 mW/m2 in control group. CO2 production increased and methane to CO2 ratio decreased in Doraji root treatment comparing to control group. These observations imply that Doraji root components would inhibit methanogenesis and alter microbial fermentation of cellulose compounds favorable to produce bioenergy efficiently in MFC. 展开更多
关键词 MFC Platycodon grandiflorum
下载PDF
Biomass Yield, Chemical Composition and Potential Ethanol Yields of 8 Cultivars of Napiergrass (<i>Pennisetum purpureum</i>Schumach.) Harvested 3-Monthly in Central Thailand 被引量:2
9
作者 Kannika Rengsirikul Yasuyuki Ishii +5 位作者 Kunn Kangvansaichol Prapa Sripichitt Vittaya Punsuvon Pilanee Vaithanomsat Ganda Nakamanee Sayan Tudsri journal of sustainable bioenergy systems 2013年第2期107-112,共6页
Eight cultivars of napiergrass (Pennisetum purpureum Schumach.), namely Dwarf, Muaklek, Bana, Taiwan A148, Common, Wruk wona, Tifton and Kampheng San, were grown in central Thailand in 2008-2009 and biomass yield, che... Eight cultivars of napiergrass (Pennisetum purpureum Schumach.), namely Dwarf, Muaklek, Bana, Taiwan A148, Common, Wruk wona, Tifton and Kampheng San, were grown in central Thailand in 2008-2009 and biomass yield, chemical composition and theoretical ethanol yield were measured. Harvests were made every 3 months. Biomass yield and cell wall compositions differed significantly (P 0.05) among cultivars. Tifton produced the highest annual biomass yield at 58.3 t/ha followed by Wruk wona (52.1 t/ha), while the lowest yield of 27.1 t/ha was in Dwarf. Biomass yield varied with season with highest yields in May and lowest in February during the dry season. Cell wall concentrations were higher in the tall cultivars than in the short ones (Dwarf and Muaklek) (P 0.05). Theoretical ethanol conversion efficiency ranged from 350 to 460 L/t DM among the cultivars following pretreatment with steam explosion. While a number of cultivars showed significant potential for use as biofuels in central Thailand, Tifton seemed to be the most promising. 展开更多
关键词 BIOENERGY Biomass Yield Cultivar PENNISETUM purpureum Season
下载PDF
Juice, Ethanol, and Grain Yield Potential of Five Sweet Sorghum (<i>Sorghum bicolor</i>[L.] Moench) Cultivars 被引量:2
10
作者 Laban K. Rutto Yixiang Xu +2 位作者 Michael Brandt Shuxin Ren Maru K. Kering journal of sustainable bioenergy systems 2013年第2期113-118,共6页
Sweet sorghum (Sorghum bicolor [L.] Moench) accumulates fermentable sugars in the stem and is increasingly being studied as a potential source of feedstock for bioethanol production. The objective of this study was to... Sweet sorghum (Sorghum bicolor [L.] Moench) accumulates fermentable sugars in the stem and is increasingly being studied as a potential source of feedstock for bioethanol production. The objective of this study was to evaluate biomass and grain yield in five sweet sorghum cultivars (Dale, M81E, Sugar Drip, Della and Keller) and to determine quality of extractable juice and grain. Randomized complete block experiments were performed in the summer of 2009, 2010, and 2011. Leaf dry weight varied with year and cultivar and averaged 6177 kg·ha-1. Fresh stem weight ranged from 21 to 54 Mg·ha-1 with a mean across years and cultivars of 32.9 Mg·ha-1. Variations in stem weight were correlated with extractable juice volumes that ranged from 10 to 24 m3·ha-1. Juice Brix values fell within a narrow range (14% - 19%) across years and cultivars with an average of 15.6%. In all production years, theoretical sugar and ethanol yield were always numerically higher for Keller and M81E. Grain yield was lowest in Keller (90 kg·ha-1), but ranged from 400 to 1300 kg·ha-1 in other cultivars with a mean of 584 kg·ha-1 across years. However, Keller had the highest starch content with a lower proportion of resistant starch in the grain. Except for Keller, the cultivars tested are potential sources of both fermentable sugars and grain. 展开更多
关键词 Sweet Sorghum Cultivar Biomass JUICE and Grain YIELD ETHANOL YIELD POTENTIAL
下载PDF
Application of Aquatic Plants for the Treatment of Selenium-Rich Mining Wastewater and Production of Renewable Fuels and Petrochemicals 被引量:2
11
作者 Ana F. Miranda Nazim Muradov +4 位作者 Amit Gujar Trevor Stevenson Dayanthi Nugegoda Andrew S. Ball Aidyn Mouradov journal of sustainable bioenergy systems 2014年第1期97-112,共16页
Aquatic plants aggressively colonising wetlands are widely used for the biosorption of the soluble contaminants from wastewater and represent an attractive feedstock for biofuel production. Three common Australian aqu... Aquatic plants aggressively colonising wetlands are widely used for the biosorption of the soluble contaminants from wastewater and represent an attractive feedstock for biofuel production. Three common Australian aquatic plants, duckweed (Landoltia punctata), elodea, (Elodea canadensis) and water clover (Marsilea quadrifolia), colonizing different depths of wetlands were tested for their ability to treat the selenium-rich mining wastewater and for their potential for production of petrochemicals. The results showed that these plants could be effective at biofiltration of selenium and heavy metals from mining wastewater accumulating them in their fast growing biomass. Along with production of bio-gas and bio-solid components, pyrolysis of these plants produced a range of liquid petrochemicals including straight-chain C14-C20 alkanes, which can be directly used as a diesel fuel supplement or as a glycerine-free component of biodiesel. Other identified bio-oil components can be converted into petrochemicals using existing techniques such as catalytic hydrodeoxygenation. A dual application of aquatic plants for wastewater treatment and production of value-added chemicals offers an ecologically friendly and cost-effective solution for water pollution problems and renewable energy production. 展开更多
关键词 BIOFUEL BIOREMEDIATION PYROLYSIS Mining Wastewater THERMOCHEMICAL Conversion
下载PDF
Effects of Sowing Time on the Growth, Development and Productivity of Sweet Sorghum 被引量:2
12
作者 Hoang Thi Bich Thao Tran Van Dien Tran Dang Xuan journal of sustainable bioenergy systems 2015年第4期127-135,共9页
The experiments were conducted to determine suitable sowing time in order to achieve high plant biomass and sugar content of sweet sorghum for bioethanol manufacture. The results showed that germination rate reached &... The experiments were conducted to determine suitable sowing time in order to achieve high plant biomass and sugar content of sweet sorghum for bioethanol manufacture. The results showed that germination rate reached > 80% in all trial times (p > 0.05). The growth and development speed of sweet sorghum reduced when seeds were sowed in August and was significantly different from other sowing times (p < 0.05). Sowing from March to June obtained the highest plant height during all growth and development stages. Lodging and diseases observed in all periods of sowing, and planting began in July and August had lower percentage. In contrast, the productivity of fresh weight (1310.4 g/whole plant), sugar content (14.9% Brix), biomass yield (122.4 tons/ha) and theoretical converted ethanol yield (5 tons/ha) were the highest when sweet sorghum planted from March to June. It was observed that sowing sweet sorghum in four periods of month from March to June had the desirable biomass for bioethanol production. 展开更多
关键词 BIOETHANOL Biomass SOWING SUGAR Content SWEET SORGHUM
下载PDF
Agronomic Use of Slurry from Anaerobic Digestion of Agroindustrial Residues: Effects on Crop and Soil 被引量:2
13
作者 Amabelia del Pino Omar Casanova +4 位作者 Mónica Barbazán Victoria Mancassola Laura Arló Liliana Borzacconi Mauricio Passeggi journal of sustainable bioenergy systems 2014年第1期87-96,共10页
In a greenhouse experiment we evaluated the application of slurry generated by a biogas reactor of agroindustrial residues. The objectives of this study were to determine the response to slurry application on dry matt... In a greenhouse experiment we evaluated the application of slurry generated by a biogas reactor of agroindustrial residues. The objectives of this study were to determine the response to slurry application on dry matter production and nutrients absorption of Setaria italica (setaria), and to evaluate the effect of the slurry on soil properties. Two soils, of different texture, were mixed either with slurry or with diammonium phofsphate (DAP) at 0, 80, and160 kgN ha-1 equivalent rates. The setaria was harvested 68 days after planting, and separated into leaves plus stems, ears, and roots. Total biomass and content of N, P, K, Ca, Mg, Cu, Fe, Mn, and Zn were determined in each fraction. In the soil we determined pH, electric conductivity (EC), organic C, available P, mineral N, and exchangeable cations. Although the biomass produced and the amounts of nutrients absorbed were different in the two soils, in both of them setaria responded to the slurry application. The amounts of N absorbed from slurry and DAP were similar, indicating that the N from the slurry was readily available. The slurry application also increased the absorption of other macro and micro nutrients (P, Ca, Mg, and Zn). No significant changes in soil exchangeable cations, pH, and EC were observed at setaria harvest. In the silty soil the crop almost depleted the mineral N in all treatments, but in the sandy soil large amounts were left, especially in the treatments with slurry. This fact highlights the importance of a careful dosage of this soil amendment, to avoid the excess of mineral N, which is potential pollutant for the environment. It can be concluded that the use of slurry from the reactor had a positive effect on the nutrients availability, without negative effects on soil properties. 展开更多
关键词 BIOSOLIDS Biogas SLURRY SETARIA ITALICA Uruguay
下载PDF
Microwave-Assisted Alkaline Pretreatment and Microwave Assisted Enzymatic Saccharification of Oil Palm Empty Fruit Bunch Fiber for Enhanced Fermentable Sugar Yield 被引量:2
14
作者 Saifuddin M. Nomanbhay Refal Hussain Kumaran Palanisamy journal of sustainable bioenergy systems 2013年第1期7-17,共11页
Lignocellulosic materials are promising alternative feedstocks for bioethanol production. However, the recalcitrant nature of lignocellulosic biomass necessitates an efficient pretreatment pretreatment step to improve... Lignocellulosic materials are promising alternative feedstocks for bioethanol production. However, the recalcitrant nature of lignocellulosic biomass necessitates an efficient pretreatment pretreatment step to improve the yield of fermentable sugars and maximizing the enzymatic hydrolysis efficiency. Microwave pretreatment may be a good alternative as it can reduce the pretreatment time and improve the enzymatic activity during hydrolysis. The overall goal of this paper is to expand the current state of knowledge on microwave-based pretreatment of lignocellulosic biomass and microwave assisted enzymatic reaction or Microwave Irradiation-Enzyme Coupling Catalysis (MIECC). In the present study, a comparison of microwave assisted alkali pretreatment was tried using Oil Palm empty fruit bunch. The microwave assisted alkali pretreatment of EFB using NaOH, significantly improved the enzymatic saccharification of EFB by removing more lignin and hemicellulose and increasing its accessibility to hydrolytic enzymes. The results showed that the optimum pretreatment condition was 3% (w/v) NaOH at 180 W for 12 minutes with the optimum component loss of lignin and holocellulose of about 74% and 24.5% respectively. The subsequent enzymatic saccharification of EFB pretreated by microwave assisted NaOH (3% w/v);resulted in 411 mg of reducing sugar per gram EFB at cellulose enzyme dosage of 20 FPU. The overall enhancement by the microwave treatment during the microwave assisted alkali pretreatment and microwave assisted enzymatic hydrolysis was 5.8 fold. The present study has highlighted the importance of well controlled microwave assisted enzymatic reaction to enhance the overall reaction rate of the process. 展开更多
关键词 LIGNOCELLULOSIC EMPTY Fruit Bunch-EFB SACCHARIFICATION Microwave Assisted Reaction Non Thermal Effects
下载PDF
Thermodynamic Analysis and Synthesis Gas Generation by Chemical-Looping Gasification of Biomass with Nature Hematite as Oxygen Carriers 被引量:2
15
作者 Zhen Huang Fang He +5 位作者 Anqing Zheng Kun Zhao Sheng Chang Xinai Li Haibin Li Zengli Zhao journal of sustainable bioenergy systems 2013年第1期33-39,共7页
Thermodynamic parameters of chemical reactions in the system were carried out through thermodynamic analysis. According to the Gibbs free energy minimization principle of the system, equilibrium composition of the rea... Thermodynamic parameters of chemical reactions in the system were carried out through thermodynamic analysis. According to the Gibbs free energy minimization principle of the system, equilibrium composition of the reactions of chemical-looping gasification (CLG) of biomass with natural hematite (Fe2O3) as oxygen carrier were analyzed using commercial software of HSC Chemistry 5.1. The feasibility of the CLG of biomass with hematite was experimental verified in a lab-scale bubbling fluidized bed reactor using argon as fluidizing gas. It was indicated the experimental results were consistent with the theoretical analysis. The presence of oxygen carrier gave a significant effect on the biomass conversion and improved the synthesis gas yield obviously. It was observed that the gas content of CO and H2 was over 70% in CLG of biomass. The reduced hematite particles mainly existed in form of FeO. It was showed that the reduction of natural hematite with biomass proceeds in a stepwise manner from Fe2O3 →Fe3O4→ FeO. Reduction product of natural hematite can be restored the lattice oxygen by oxidation with air. 展开更多
关键词 THERMODYNAMICS Synthesis Gas Natural HEMATITE Oxygen Carriers BIOMASS Chemical LOOPING GASIFICATION
下载PDF
Row Spacing Affects Biomass Yield and Composition of Kenaf (<i>Hibiscus cannabinus</i>L.) as a Lignocellulosic Feedstock for Bioenergy 被引量:2
16
作者 Marisol T. Berti Srinivas Reddy Kamireddy Yun Ji journal of sustainable bioenergy systems 2013年第1期68-73,共6页
Kenaf (Hibiscus cannabinus L.) is a warm-season annual. Kenaf fibers are commonly used for paper pulp and cordage, but it is also a promising lignocellulosic feedstock for bioenergy production, although optimum plant ... Kenaf (Hibiscus cannabinus L.) is a warm-season annual. Kenaf fibers are commonly used for paper pulp and cordage, but it is also a promising lignocellulosic feedstock for bioenergy production, although optimum plant density for biomass production has not been determined for the northern region of the USA. The objective of this study was to determine the best plant density and row spacing of kenaf to maximize biomass yield and chemical composition for biofuel conversion. The experiments were conducted at Fargo and Prosper, ND, in 2010 and 2011. The experiment was a randomized complete block design with a split-plot arrangement where the main plot was tworowspacings (30 and60 cm) and the sub-plot fourplant densities (32, 16, 8, and 4 plants·m-2). Row spacing had a significant effect on both biomass and biofuel yield. Narrower rows had higher biomass and biofuel yield. Maximum biomass and estimated biofuel yield was obtained with the two highest plant densities of 16 and 32 plants·m-2 and fluctuated between 9.45 and 10.22 Mg·ha-1 and 1354 and1464 L·ha-1, respectively. Stem diameter increased with a decrease in plant density. Chemical composition varied with plant density;glucan (27%) and xylan (9.8%) content were lower at the lowest plant density. Ash content was not different among plant densities but it is interesting to mention the very low ash content of kenaf (0.15%). According to the results of this study, it is recommended to plant kenaf at 30-cm rows with a plant density of 16 to 32 plants·m-2 to maximize biomass yield. Kenaf has a tremendous potential as a cellulosic feedstock for biofuel and green chemicals in the Northern Great Plains because of high biomass yield and low ash content. 展开更多
关键词 BIOENERGY LIGNOCELLULOSIC FEEDSTOCK Plant Density GLUCANS XYLANS Ash
下载PDF
Evaluation of Aqueous Product from Hydrothermal Liquefaction of Cardboard as Bacterial Growth Medium: Co-Liquefaction of Cardboard and Bacteria for Higher Bio-Oil Production 被引量:1
17
作者 A. Shende W. Nan +3 位作者 E. Kodzomoyo J. Shannon J. Nicpon R. Shende journal of sustainable bioenergy systems 2017年第2期51-64,共14页
Hydrothermal liquefaction (HTL) processing of lignocellulosic biomass to bio-oil produces aqueous co-product (AP) which contains significant (~40 wt%) carbon from the original feedstock. This study evaluates macro and... Hydrothermal liquefaction (HTL) processing of lignocellulosic biomass to bio-oil produces aqueous co-product (AP) which contains significant (~40 wt%) carbon from the original feedstock. This study evaluates macro and micronutrient composition of AP from Ca(NO3)2 catalyzed HTL of cardboard (CbAP) to cultivate bacteria. HPLC, GC-MS and ICP-MS analysis of CbAP revealed presence of C1-C3 carboxylic acids, aldehydes, ketones, phenolics, sub-optimal phosphorous and bio-incompatible levels of calcium. Dilutions (5 - 80 vol%) of detoxified CbAP (DTP-CbAP) in potassium phosphate buffer (pH 7.2) were supplemented with 50 mg·mL-1 of yeast extract and inoculated with metabolically versatile Enterobacter species. The cultures were incubated at 25°C under aerobic conditions. A maximum 9.4 fold increase in the dry cell weight was observed in DTP-CbAP-15 vol%. Co-liquefaction of the bacteria with cardboard in 1:1 and 1:3 weight ratios each produced ~33% more total bio-oil. These had higher HHVs of 34.11 and 31.05 MJ·kg-1, respectively compared with bio-oil from cardboard feedstock alone which had HHV of 30.61 MJ·kg-1. The study highlights the challenges in cultivating microbes in AP from HTL of lignocellulosic biomass (LCB) and the possibility to integrate microbial capture and recycle of the AP carbon for enhanced bio-oil production and quality. 展开更多
关键词 Hydrothermal LIQUEFACTION CARDBOARD BIO-OIL AQUEOUS Co-Product ENTEROBACTER
下载PDF
The Production of 1,8-Cineole, a Potential Biofuel, from an Endophytic Strain of <i>Annulohypoxylon</i>sp. FPYF3050 When Grown on Agricultural Residues 被引量:1
18
作者 K. Y. Wang G. A. Strobel D.-H. Yan journal of sustainable bioenergy systems 2017年第2期65-84,共20页
An endophytic fungus producing 1,8-cineole from Neolitsea pulchella (Meissn.) Merr. was identified as Annulohypoxylon sp. by phylogenetic analyses of the sequence alignments of ITS rDNA, β-tubulin, Actin and EF1-α. ... An endophytic fungus producing 1,8-cineole from Neolitsea pulchella (Meissn.) Merr. was identified as Annulohypoxylon sp. by phylogenetic analyses of the sequence alignments of ITS rDNA, β-tubulin, Actin and EF1-α. This isolate produces an attractive spectrum of volatile organic compounds (VOCs) with only one dominant component, 1,8-cineole, as identified by gas chromatography-mass spectrometry (GC-MS). The fungus was able to grow in seven media with different carbon sources, and five raw agro-forest residues. The content of 1,8-cineole in the mixed VOCs via fungus reached up to 94.95% and 91.25% relative area in PDA and raw poplar sawdust, respectively. Under optimum test conditions, the fungus produced 1,8-cineole at the 0.764 ppmv in 50 mL head spaces in PDA. Interestingly, 1,8-cineole is an ideal fuel additive for both diesel and gasoline engines. Also, this is the first isolate, in this group of fungi, making cineole, which produces as its primary VOC product which makes it an ideal organism for strain improvement. Such as step will be critical for its ultimate use in biofuel production. 展开更多
关键词 1 8-Cineole Agro-Forest Residues ENDOPHYTIC Annulohypoxylon BIOFUEL FUNGAL VOCs
下载PDF
Production of Fuel Briquettes from Bamboo and Agricultural Residue as an Alternative to Charcoal 被引量:1
19
作者 Patrick Mulindwa Dan Egesa +1 位作者 Anthony Osinde Esther Nyanzi journal of sustainable bioenergy systems 2021年第3期105-117,共13页
The study was done to explore the potential of producing fuel briquettes that could meet the need for energy in Uganda, especially Kampala city. The primary objective of this work was to produce fuel briquettes from&l... The study was done to explore the potential of producing fuel briquettes that could meet the need for energy in Uganda, especially Kampala city. The primary objective of this work was to produce fuel briquettes from</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">homogene</span><span style="font-family:Verdana;">ous and heterogeneous combination</span><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span><span style="font-family:Verdana;"> of carbonized maize cobs, Bamboo</span><span style="font-family:Verdana;"> poles and charcoal dust. For the primary objective to be achieved, the main activities which were performed included;chopping bamboo poles, sorting maize cobs, carbonization, crushing, binder preparation, mixing, extrusion, drying and quality assessment of the fuel briquettes. The maize cobs and charcoal dust used for this work were purchased from the farmers and charcoal sellers respectively from </span><span style="font-family:Verdana;"><span style="font-family:Verdana;">the </span></span><span style="font-family:Verdana;">districts of Luwero and Nakaseke. Bamboo poles were provided by Divine bamboo group. The homogenous combinations included 100% maize cob char, 100% bamboo char and 100% charcoal dust. Heterogeneous combinations included 75% bamboo char + 25% charcoal dust and 25% bamboo char + 75% charcoal dust. The test results for both homogenous and heterogeneous combinations of fuel briquettes had ranges of moisture content 8%</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">11%, Volatile matter 12%</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">23%, Ash content 33%</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">-</span><span style="font-family:Ve 展开更多
关键词 BIOENERGY Solid Biofuels Briquette Quality
下载PDF
Advanced Strategies to Mobilize Crop Residue to Replace Coal in India
20
作者 Shahabaddine Sokhansanj Yogender Kumar Yadav +3 位作者 Anthony Lau   Yadvika Kanishk Verma Nitin Karwasra journal of sustainable bioenergy systems 2023年第2期57-72,共16页
Various published data show the amount of crop residue available annually in India may range from a low of 90 to a high of 180 million tonnes. Different types of crop residue are collected from farmers depending on th... Various published data show the amount of crop residue available annually in India may range from a low of 90 to a high of 180 million tonnes. Different types of crop residue are collected from farmers depending on the geography and crop pattern for instance, in north India rice straw and cotton stalks are collected while in central India soya husk and sugarcane tops are collected. Baling and transporting straw from the field, though appear to be an option for safe disposal, will be feasible only when alternate, effective and economically viable usage methods are identified and facilities and infrastructure for ex-situ management methods are created. One immediate short term use of the residue is to replace 5% - 7% of the 670 million tonnes of coal India currently consumes to generate power. The farmers will benefit from the sale of their excess crop residue. The scheme will reduce pollution due to residue burning practices. Replacing coal will cut the GHG emissions. The challenge is to mobilize the crop residue collection and timely delivery to power plants. The data and calculations in this monogram show that it is economical for the farmer to remove the crop residue from the field quickly by using modern balers, to pelletize the biomass in small-scale distributed pellet plants, to store pellets in the modern steel bins and finally to deliver the pellets to coal plants by using rail transport. The delivered cost is estimated at around Rp 6.78/kg. The Government of India encourages the power plants to pay at least Rp 10/kg for the delivered biomass in the form of pellets. The current monogram analyzes the organization of an efficient supply chain in the State of Haryana India to ensure a sustainable modern enterprise. 展开更多
关键词 INDIA PELLETS Power Plant COAL Ag pellets Supply Chain LOGISTICS Storage Bins Rail Transport Cost Estimates GHG Emissions INFRASTRUCTURE
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部