In this study, a new technique was developed using rapid ultra-performance liquid chromatography (UPLC)-based separation coupled with electrochemical detection by a boron-doped diamond (BDD) electrode for the detectio...In this study, a new technique was developed using rapid ultra-performance liquid chromatography (UPLC)-based separation coupled with electrochemical detection by a boron-doped diamond (BDD) electrode for the detection and quantification of three commonly used parabens (methylparaben (MP), ethylparaben (EP) and propylparaben (PP)). We aimed to reduce the analysis time by using UPLC coupled with a short reverse phase C 18 monolithic column (25 mm×4.6 mm). Operating the monolithic column at low back-pressure resulted in high flow rates. A mobile phaseconsisting of a 25:75 (v/v) ratio of acetonitrile:0.05 Mphosphate buffer (pH 5) at a flow rate of 2.5 mL·min?1 was used to perform the separation. The amperometric detection with the BDD electrode was found to be optimal and reliably reproducible at a detection potential of 1.5 V vs. Ag/AgCl. Under these conditions, the separation of the three targetanalytes (MP, EP and PP) was achieved in 2 min and was linear within a sample concentration range of 0.1 to 50.0 mg·L?1 (r2 values of 0.9970, 0.9994 and 0.9994 for MP, EP and PP, respectively). This method was successfully applied to determine the concentrations of each parabeninsix real samples with therecoveries ranging from of 80.3% - 98.9% for all three parabensfrom samples spiked at 12, 22 and 32 mg·L?1. Therefore, the proposed method can be used as an alternative rapid and selective method for the determination of paraben levels in real samples.展开更多
Chlorophenols (2-chlorophenol, 4-chlorophenol, 2,4-dichlorophenol, 2,6-dichlorophenol and 2,4, 6-trichlorophenol) may be presented in natural waters or drinking water as a result of disinfection processes involving ch...Chlorophenols (2-chlorophenol, 4-chlorophenol, 2,4-dichlorophenol, 2,6-dichlorophenol and 2,4, 6-trichlorophenol) may be presented in natural waters or drinking water as a result of disinfection processes involving chlorination, or as contaminants derived from domestic products, industrial operations and agricultural chemicals. A previous HPLC-UV method for determination of phenol and five chlorophenols in tap water using 4-fluoro-7-nitro-2,1,3-benzoxadiaole as a UV labeling reagent shows limited sensitivity. Here, we present an improved HPLC-fluorescence detection method for simultaneous determination of phenol and the above chlorophenols in tap water after pre-column derivatization with 3-chlorocarbonyl-6,7-dimethoxy-1-methyl-2(1H)-quino- xalinone (DMEQ-COCl), using a short, narrow column (50 × 2.1 mm i.d., packed with 5 μm particles of C18 material) to improve the sensitivity. Standard samples containing the compounds are derivatized with DMEQ-COCl in borate buffer (pH 9.0) at room temperature for 3 mins. The response is linear in the concentration range of 0.01 - 0.05 to 0.5 mg/L with r2 values ≥0.9967 for all compounds. The lower limits of detection are 0.001 to 0.008 mg/L, and the coefficients of variation are less than 8.8%. The recovery values from tap water spiked with standard samples are satisfactory. The present method is suitable for examining whether or not tap water samples are contaminated with phenol and chlorophenols in excess of regulatory values.展开更多
In order to improve the concentration of selenium in the maifanite concentrate, the optimum experimental conditions were obtained by orthogonal experimentas follows: size of maifanite was 10 mesh, concentration of mai...In order to improve the concentration of selenium in the maifanite concentrate, the optimum experimental conditions were obtained by orthogonal experimentas follows: size of maifanite was 10 mesh, concentration of maifanite was 15 (expressed as the quality of maifanite divided by that of water), soaking time was 60 min at room temperature, heating temperature was 70oC, heating time was 20 min, pH value was 6. Under this condition, the concentrations of each element (ppm)determined by ICP-AES were: Fe 0.099, Cu 0.035, Mn 0.051, Zn 0.019, Se 0.028, Al 0.000.a ven in this document.展开更多
Nine medicinal or herbal plants used in Iraq were analyzed to determine natural radioactivity. The radionuclides were determined by Gross alpha, beta and gamma spectrometry Proportional counter + NaI(Tl) detector type...Nine medicinal or herbal plants used in Iraq were analyzed to determine natural radioactivity. The radionuclides were determined by Gross alpha, beta and gamma spectrometry Proportional counter + NaI(Tl) detector type(XLB5) and gamma-ray spectroscopy with (HPGe) techniques. The activity concentration of 40K ranged from 124.1 Bq/kg in (Crust sample) to 88.3 Bq/kg in (Chamomile sample), for gross alpha ranged from (N.D.) in (Flax sample) to 0.4 cpm in (Anise sample), while for beta ranged from 5.7 cpm in (Flax sample) to 25.6 cpm in (Latency sample) and for gamma ranged from 0.6 cpm in (Thyme sample) to 5.10 cpm in (Coriander and Flax samples).展开更多
Preferably 20 ppm anhydrous ammonia (NH<sub>3</sub>) is proposed to be added to hydrogen fuel (H) made from renewable energy sources (green hydrogen), so that H leaks may be easily detectable by smell, but...Preferably 20 ppm anhydrous ammonia (NH<sub>3</sub>) is proposed to be added to hydrogen fuel (H) made from renewable energy sources (green hydrogen), so that H leaks may be easily detectable by smell, but not dangerously toxic. Including this odor agent, would allow H to be distributed safely in pipes, as required by law, and it would allow H to be safely stored, transported, and exported for sale, and widely commercialized. Further research is suggested to identify optimum pressure, temperature, and automated technique for injecting NH<sub>3</sub> into H, and to chart the minimum concentration needed, as a function of temperature and humidity. An application to make hypersonic H burning aircraft safer for ground maintenance crews is proposed. An ability to make, store and distribute H, made from local sources of renewable energy, would reduce a need for fossil fuels, especially in poor, remote communities, where it could improve their economy by creating an export product for sale, while reducing pollution.展开更多
Two cryogenic systems of high purity germanium detector, liquid nitrogen and mechanical cooler, are expounded, to- gether with explanations of merits and demerits for each kind of cooling methods. The resolutions of d...Two cryogenic systems of high purity germanium detector, liquid nitrogen and mechanical cooler, are expounded, to- gether with explanations of merits and demerits for each kind of cooling methods. The resolutions of detector to the characteristic lines of 152Eu under different cooling conditions are studied. The laboratory results indicate that the me- chanical cooler (X-Cooler II) is an ideal replacement candidate for the liquid nitrogen cooling system that is being util- ized by BEMS at BEPC-II.展开更多
In the present study twenty-two vegetable samples were collected from Iraqi market. Sealed can technique using CR-39 plastic track detector strippable has been used in order to measure radium and uranium concentration...In the present study twenty-two vegetable samples were collected from Iraqi market. Sealed can technique using CR-39 plastic track detector strippable has been used in order to measure radium and uranium concentrations. Etching was done with 6.25 N NaOH and optical microscope was used with the purpose of counting of alpha particle tracks. The values of effective radium content are found to range from 0.074 Bq/ kg to 0.566 Bq/ kg with the mean value of 0.317 Bq/kg. The values of uranium concentrations are found to range from 0.081 ppm to 0.615 ppm with the mean value of 0.345 ppm. Positive correlation has been observed between radium concentration and uranium concentrations in vegetable samples. Measurements of radium and uranium concentrations in vegetables are important from the health protection point of view, so simple and reliable analytical methods must be available.展开更多
CN-85 detector which covered with boric acid H3Bo3 pellete has been irradiated by thermal neutrons from (241Am-9Be) source with activity 12 Ci and neutron flux 105 n. cm-2. s-1. The irradiation times-TD for detector w...CN-85 detector which covered with boric acid H3Bo3 pellete has been irradiated by thermal neutrons from (241Am-9Be) source with activity 12 Ci and neutron flux 105 n. cm-2. s-1. The irradiation times-TD for detector were 4 h, 8 h, 16 h and 24 h. The track detector has been etched with sodium hydroxide. After chemical etching of the irradiated CN-85 detector, the images have been taken from a digital camera connected to the optical microscope. Image processing for the output images has been performed using MATALB program, and these images were analyzed and we had found the following relations: a) The relation between summation of opened track or surface density for tracks (intensity-IT) varies with radius of opening (track radius-RT). b) The relation between the tracks number-NT varies with the tracks diameter-DT (in micrometer) and tracks area-AT. That analysis of image processing was obtained, and the track intensity-IT was decreased with increase of track radius-RT at all of the irradiation time-TD. And the track intensity-IT was increased with increasing irradiation time-TD (h) for different track radius-RT (0.4225, 0.845, 1.2675 and 1.69 μm). The study indicates the possibility of using the analysis of image processing to CN-85 detector for classification of α-particle emitters through limitation of radius of track-RT, in addition to the contribution of these techniques in preparation of nano-filters and nono-membrane in nanotechnology fields.展开更多
Radongas concentrations in soil samples were determined from depths (surface, 15, and 30) cm for nine locations in Al-Dora refinery and surrounding area using “sealed can technique” and CR-39 solid state nuclear tra...Radongas concentrations in soil samples were determined from depths (surface, 15, and 30) cm for nine locations in Al-Dora refinery and surrounding area using “sealed can technique” and CR-39 solid state nuclear track detectors. The radon concentration in surface samples ranged from 810.08 to 1380.08 Bq/m3 with an average 1137.71 Bq/m3. The radon concentration in soil at the depth 15 cm was ranged from 490.5 to 1197.52 Bq/m3 with an average 732.78 Bq/m3 and at the depth 30 cm was ranged from 362.07 to 889.53 Bq/m3 with an average 529.41 Bq/m3. The surface exhalation rate in surface soil samples ranged was 0.44, to 0.99 Bq·m-2·h-1 with average 0.61 Bq·m-2·h-1. The surface exhalation rate in soil samples at the depth 15 cm was ranged from 0.22 to 0.64 Bq·m-2·h-1 with average 0.39 Bq·m-2·h-1. The surface exhalation rate in soil samples at the depth 15 cm was ranged from 0.22 to 0.64 Bq·m-2·h-1 with average 0.39 Bq·m-2·h-1. The surface exhalation rate and the mass exhalation rate in soil samples at the depth 30 cm ranged from 0.19, to 0.48 Bq·m-2·h-1 with average 0.28 Bq·m-2·h-1. The mass exhalation rate in surface soil samples ranged from 0.09 to 0.21 Bq·kg-1·h-1 with average 0.12 Bq·kg-1·h-1. The mass exhalation rate in soil samples from depth 15 cm was ranged from 0.046 to 0.14 Bq·kg-1·h-1 with average 0.08 Bq·kg-1·h-1. The mass exhalation rate in soil samples at the depth 30 cm was ranged from 0.042 to 0.1 Bq·kg-1·h-1 with average 0.06 Bq·kg-1·h-1.展开更多
This paper provides a theoretical study and calculation of the specific detectivity-D* limit of photovoltaic (PV) mid-wave infrared (MWIR) PbSe n+-p junction detectors operating at both room temperature and TE-cooled ...This paper provides a theoretical study and calculation of the specific detectivity-D* limit of photovoltaic (PV) mid-wave infrared (MWIR) PbSe n+-p junction detectors operating at both room temperature and TE-cooled temperature. For a typical PbSe p-type doping concentration of 2 × 1017 cm-3 and with high quantum efficiency, the D* limits of a photovoltaic PbSe n+-p junction detector are shown to be 2.8 × 1010 HZ1/2/W and 3.7 × 1010 HZ1/2/W at 300 K and 240 K, with cut-off wavelength of 4.5 μm and 5.0 μm, respectively. It is almost one magnitude higher than the current practical MWIR PV detector. Above 244 K, the detector is Johnson noise limited, and below 191 K the detector reaches background limited infrared photodetector (BLIP) D*. With optimization of carrier concentration, D* and BLIP temperature could be further increased.展开更多
In this research we try to investigate the optimum etching time for the tracks originate in (CR-39) solid state nuclear track detector after irradiated with alpha source (<sup>241</sup>Am) using three diff...In this research we try to investigate the optimum etching time for the tracks originate in (CR-39) solid state nuclear track detector after irradiated with alpha source (<sup>241</sup>Am) using three different etching techniques: the traditional method (water bath), microwaves and ultrasound devices. The track etching parameters: bulk etch rate (V<sub>B</sub>), track etch rate (V<sub>T</sub>), track etch rate ratio evaluates (V), critical angle (θ<sub>C</sub>), and etching efficiency (η) were calculated in this research. It’s seen that the optimum etching time was ranging with (60 - 150 min), (20 - 30 min) and (60 - 120 min) when etching with water bath, microwave and ultrasound respectively. Also we observed that the critical angle was (24.29) when etching CR-39 detector with microwave. This value is lower than the critical angles values for the detector etched with water bath or ultrasound;thus it can be the optimum magnitude because its decrease leads to increasing the number of the tracks appeared in the detector and the etching efficiency.展开更多
In the metrology of radon, an environmental lung carcinogen, the integrated measurements necessary for epidemiological studies are made very often using the tracks detector LR 115 type 2. For dosimetric analysis, the ...In the metrology of radon, an environmental lung carcinogen, the integrated measurements necessary for epidemiological studies are made very often using the tracks detector LR 115 type 2. For dosimetric analysis, the etched tracks from radon alpha particles on this detector are usually counted by means of an optical microscope or a spark counter. An optimal reading of the track densities which must be converted into radon concentrations, can’t be done without a good mastery of the mode of operation and use of these devices. Furthermore, investigations to know as to whether or not each of those can be used to determine radon concentration are necessary. These are the objectives of the present work in which LR 115 samples exposed to radon for at least 3 months, were chemically developed under standard conditions and read. The track densities obtained with the microscope are very much higher than those of the counter for each sample. These results are consistent with those published by other authors. However, each of these devices can be used interchangeably for alpha tracks counting, as both provide radon concentrations with a very good linear correlation coefficient of 0.95 taking into account their respective calibration factors for the reading of this detector. In addition, the saturation phenomenon for the spark counter reading of LR 115 detector occurs beyond 11,000 tr/cm<sup>2</sup>, a density never reached during our environmental radon measurements.展开更多
Just as lead-based perovskites that are hot in solar cell preparation, Bi-based perovskites have demonstrated excellent performance in direct X-ray detection, especially the Cs<sub>3</sub>Bi<sub>2<...Just as lead-based perovskites that are hot in solar cell preparation, Bi-based perovskites have demonstrated excellent performance in direct X-ray detection, especially the Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> single crystals (SCs). However, compared with lead-halide perovskites, one challenge for the Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> SCs for X-ray detection application is that it is difficult to prepare large-sized and high-quality SCs. Therefore, how to get a large area with a high-quality wafer is also as important as Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> growth method research. Here, different anti-solvents are used for the preparation of poly-crystalline powder with the Antisolvents precipitation (A) method, as a control, High-energy ball milling (B) was also used to prepare poly-crystalline powders. The resultant two types of Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> wafer exhibit a micro-strain of 1.21 × 10<sup>-3</sup>, a resistivity of 5.13 × 10<sup>8</sup> Ω cm and a microstrain of 1.21 × 10<sup>-3</sup>, a resistivity of 2.21 × 10<sup>9</sup> Ω cm. As a result, an X-ray detector based on the high-quality Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> wafer exhibits excellent dose rate linearity, a sensitivity of 588 μC·Gyairs<sup>-1</sup>·cm<sup>-2</sup> and a limit of detection (LoD) of 76 nGyair·s<sup>-1</sup>.展开更多
In order to evaluate the electromagnetic environment of 5G base station, measurement and evaluation of the electromagnetic environment are studied. The 12 measuring points are chosen on the roof, inside and outside of...In order to evaluate the electromagnetic environment of 5G base station, measurement and evaluation of the electromagnetic environment are studied. The 12 measuring points are chosen on the roof, inside and outside of the building, which has a 5G base station on the top. The electric field intensity, magnetic field intensity, and power density have been measured. The measurement methods include background measurement and work measurement. Background measurement is the measurement of environmental electromagnetic field (EMF) before the installation of 5G base station while the working measurement is the measurement after the installation of 5G base station. The evaluation methods include t-test for qualitative evaluation and electromagnetic gain for quantitative evaluation. The results show that the electromagnetic environment after the installation of 5G base station in most places is different from that in the background. And the environmental electromagnetic fields in certain parts are lower than those in the background. The conclusions are as follows: 1) The electromagnetic environment of 5G base station is far lower than the control limit of the national standard and conforms to the national standard;2) The electromagnetic environment of 5G base station has little impact on the electromagnetic environment;3) It is not sufficient to assume that 5G is harmful to health without the results of the epidemiological investigation;4) Before the construction of 5G base station, do background EMF detection, which can provide support for future evaluation.展开更多
The effect of gamma on nuclear track detector type PM-355 (at the dose range 200 to 1600 kGy) and thermal neutron (flux 105 n·cm-2·s-1) was calculated by using of two irradiation methods. First method (G + N...The effect of gamma on nuclear track detector type PM-355 (at the dose range 200 to 1600 kGy) and thermal neutron (flux 105 n·cm-2·s-1) was calculated by using of two irradiation methods. First method (G + N) was an irradiation PM-355 detector by gamma radiation and then irradiation by thermal neutrons, and another method (N + G) was irradiated by thermal neutrons and then gamma radiation. FTIR-spectroscopy was used to measure the change in deferent of transmission percent ΔT% at the wavenumber 1260 cm-1 with wavenumber 2962 cm-1 [ΔT%]1260-2962 and wavenumber 1138 cm-1 [ΔT%]1260-1138. The values of [ΔT%]1260-2962 and [ΔT%]1260-1138 were increasing with the increase of gamma irradiation with maximum response at 820 kGy and then drop after this dose until to 1600 kGy. This study determined the linear equations relation between the effect of gamma radiation on PM-355 detector and the change of [ΔT%]1260-2962 and [ΔT%]1260-1138, and this change appeared in (N + G) irradiation method better than in (G + N) irradiation method. The appearance of wavenumber 2964 cm-1 in (G + N) irradiation method referred to alkyl asymmetry C-H bond stretched out of skelated plane after changes in chemical structure of PM-355 detector by gamma or neutrons radiation.展开更多
In this paper a new type of passive neutron detector based on the already existing one, CR39, is described. Its operation was verified by three different neutron sources: an Americium-Beryllium (Am241-Be) source;a TRI...In this paper a new type of passive neutron detector based on the already existing one, CR39, is described. Its operation was verified by three different neutron sources: an Americium-Beryllium (Am241-Be) source;a TRIGA type nuclear reactor;and a fast neutron reactor called TAPIRO. The obtained results, reported here, positively confirm its operation and the accountability of the new developed detecting technique.展开更多
In the present work, we have measured the radon gas concentrations in tap water samples are taken directly from drinking tap water in sites houses being carried in Thi-Qar governorate by using nuclear track detector (...In the present work, we have measured the radon gas concentrations in tap water samples are taken directly from drinking tap water in sites houses being carried in Thi-Qar governorate by using nuclear track detector (CR-39). The results of measurements have shown that the highest average radon concentration in water samples is found in AL-Refai region which is equal to (0.223 ± 0.03 Bq/L), while the lowest average radon gas concentration is found in AL-Fajr region which is equal to (0.108 ± 0.01 Bq/L), with an average value of (0.175 ± 0.03 Bq/L). The highest value of annual effective dose (AED) in tap water samples is found in AL-Refai region, which is equal to (0.814 μSv/y), while the lowest value of (AED) is found in AL-Fajr region which is equal to (0.394 μSv/y), with an average value of (0.640 ± 0.1 μSv/y). The present results have shown that radon gas concentrations in tap water samples are less than the recommended international value (11.1 Bq/L). There for tap water in all the studied sites in Thi-Qar governorate is safe as for as radon concentration being concerned.展开更多
Through the introduction of the anti-corrosion test schemes, the test equipments and the test procedure for three kinds of basal slop protection materials including fence, mixed stump and geo-textile, this paper comes...Through the introduction of the anti-corrosion test schemes, the test equipments and the test procedure for three kinds of basal slop protection materials including fence, mixed stump and geo-textile, this paper comes to a conclusion about the analysis of the anti-corrosion test, revealing that among all of the common basal slop protection materials, mixed stump and fence are with Class II anti-corrosion property, while the geo-textile is with the first-class anti-corrosion property.展开更多
In this article, we reported that carmofur could be induced by some solvent to produce conformational alteration. Ultraviolet (UV) spectra were used to study the conformation alteration of carmofur. Upon the addition ...In this article, we reported that carmofur could be induced by some solvent to produce conformational alteration. Ultraviolet (UV) spectra were used to study the conformation alteration of carmofur. Upon the addition of acid in the some solvent, UV spectroscopy of carmofur could change gradually. When base was added to this system, UV spectroscopy of carmofur could return to the original state, and the change process was reversible. The variable temperature 1H and 13C-NMR spectrum were used to testify that temperature did not have any effect on the conformation alteration of carmofur in Acetonitrile: Trifluoroacetic-acid (9:1). These two conformers of carmofur were structurally stable in Acetonitrile: Trifluoroacetic-acid (9:1).展开更多
In this study, we used strippable LR 115 type 2 which is a Solid State Nuclear Track Detector (SSNTD) widely known for radon gas detection and measurement. The removed thickness of the active layer of samples of this ...In this study, we used strippable LR 115 type 2 which is a Solid State Nuclear Track Detector (SSNTD) widely known for radon gas detection and measurement. The removed thickness of the active layer of samples of this SSNTD, were determined by measuring the average initial thickness (before etching) and residual thickness after 80 to 135 minutes chemical etching in the standard conditions, using an electronic comparator. These results allowed the calculation of the bulk etch rate of this detector in a simple way. The mean value obtained is (3.21 ± 0.21) μm/h. This value is in close agreement with those reported by different authors. It is an important parameter for alpha track counting on the sensitive surface of this polymeric detector after chemical etching because track density depends extremely on its removed layer. This SSNTD was then used for environmental radon gas monitoring in Côte d’Ivoire.展开更多
文摘In this study, a new technique was developed using rapid ultra-performance liquid chromatography (UPLC)-based separation coupled with electrochemical detection by a boron-doped diamond (BDD) electrode for the detection and quantification of three commonly used parabens (methylparaben (MP), ethylparaben (EP) and propylparaben (PP)). We aimed to reduce the analysis time by using UPLC coupled with a short reverse phase C 18 monolithic column (25 mm×4.6 mm). Operating the monolithic column at low back-pressure resulted in high flow rates. A mobile phaseconsisting of a 25:75 (v/v) ratio of acetonitrile:0.05 Mphosphate buffer (pH 5) at a flow rate of 2.5 mL·min?1 was used to perform the separation. The amperometric detection with the BDD electrode was found to be optimal and reliably reproducible at a detection potential of 1.5 V vs. Ag/AgCl. Under these conditions, the separation of the three targetanalytes (MP, EP and PP) was achieved in 2 min and was linear within a sample concentration range of 0.1 to 50.0 mg·L?1 (r2 values of 0.9970, 0.9994 and 0.9994 for MP, EP and PP, respectively). This method was successfully applied to determine the concentrations of each parabeninsix real samples with therecoveries ranging from of 80.3% - 98.9% for all three parabensfrom samples spiked at 12, 22 and 32 mg·L?1. Therefore, the proposed method can be used as an alternative rapid and selective method for the determination of paraben levels in real samples.
文摘Chlorophenols (2-chlorophenol, 4-chlorophenol, 2,4-dichlorophenol, 2,6-dichlorophenol and 2,4, 6-trichlorophenol) may be presented in natural waters or drinking water as a result of disinfection processes involving chlorination, or as contaminants derived from domestic products, industrial operations and agricultural chemicals. A previous HPLC-UV method for determination of phenol and five chlorophenols in tap water using 4-fluoro-7-nitro-2,1,3-benzoxadiaole as a UV labeling reagent shows limited sensitivity. Here, we present an improved HPLC-fluorescence detection method for simultaneous determination of phenol and the above chlorophenols in tap water after pre-column derivatization with 3-chlorocarbonyl-6,7-dimethoxy-1-methyl-2(1H)-quino- xalinone (DMEQ-COCl), using a short, narrow column (50 × 2.1 mm i.d., packed with 5 μm particles of C18 material) to improve the sensitivity. Standard samples containing the compounds are derivatized with DMEQ-COCl in borate buffer (pH 9.0) at room temperature for 3 mins. The response is linear in the concentration range of 0.01 - 0.05 to 0.5 mg/L with r2 values ≥0.9967 for all compounds. The lower limits of detection are 0.001 to 0.008 mg/L, and the coefficients of variation are less than 8.8%. The recovery values from tap water spiked with standard samples are satisfactory. The present method is suitable for examining whether or not tap water samples are contaminated with phenol and chlorophenols in excess of regulatory values.
文摘In order to improve the concentration of selenium in the maifanite concentrate, the optimum experimental conditions were obtained by orthogonal experimentas follows: size of maifanite was 10 mesh, concentration of maifanite was 15 (expressed as the quality of maifanite divided by that of water), soaking time was 60 min at room temperature, heating temperature was 70oC, heating time was 20 min, pH value was 6. Under this condition, the concentrations of each element (ppm)determined by ICP-AES were: Fe 0.099, Cu 0.035, Mn 0.051, Zn 0.019, Se 0.028, Al 0.000.a ven in this document.
文摘Nine medicinal or herbal plants used in Iraq were analyzed to determine natural radioactivity. The radionuclides were determined by Gross alpha, beta and gamma spectrometry Proportional counter + NaI(Tl) detector type(XLB5) and gamma-ray spectroscopy with (HPGe) techniques. The activity concentration of 40K ranged from 124.1 Bq/kg in (Crust sample) to 88.3 Bq/kg in (Chamomile sample), for gross alpha ranged from (N.D.) in (Flax sample) to 0.4 cpm in (Anise sample), while for beta ranged from 5.7 cpm in (Flax sample) to 25.6 cpm in (Latency sample) and for gamma ranged from 0.6 cpm in (Thyme sample) to 5.10 cpm in (Coriander and Flax samples).
文摘Preferably 20 ppm anhydrous ammonia (NH<sub>3</sub>) is proposed to be added to hydrogen fuel (H) made from renewable energy sources (green hydrogen), so that H leaks may be easily detectable by smell, but not dangerously toxic. Including this odor agent, would allow H to be distributed safely in pipes, as required by law, and it would allow H to be safely stored, transported, and exported for sale, and widely commercialized. Further research is suggested to identify optimum pressure, temperature, and automated technique for injecting NH<sub>3</sub> into H, and to chart the minimum concentration needed, as a function of temperature and humidity. An application to make hypersonic H burning aircraft safer for ground maintenance crews is proposed. An ability to make, store and distribute H, made from local sources of renewable energy, would reduce a need for fossil fuels, especially in poor, remote communities, where it could improve their economy by creating an export product for sale, while reducing pollution.
文摘Two cryogenic systems of high purity germanium detector, liquid nitrogen and mechanical cooler, are expounded, to- gether with explanations of merits and demerits for each kind of cooling methods. The resolutions of detector to the characteristic lines of 152Eu under different cooling conditions are studied. The laboratory results indicate that the me- chanical cooler (X-Cooler II) is an ideal replacement candidate for the liquid nitrogen cooling system that is being util- ized by BEMS at BEPC-II.
文摘In the present study twenty-two vegetable samples were collected from Iraqi market. Sealed can technique using CR-39 plastic track detector strippable has been used in order to measure radium and uranium concentrations. Etching was done with 6.25 N NaOH and optical microscope was used with the purpose of counting of alpha particle tracks. The values of effective radium content are found to range from 0.074 Bq/ kg to 0.566 Bq/ kg with the mean value of 0.317 Bq/kg. The values of uranium concentrations are found to range from 0.081 ppm to 0.615 ppm with the mean value of 0.345 ppm. Positive correlation has been observed between radium concentration and uranium concentrations in vegetable samples. Measurements of radium and uranium concentrations in vegetables are important from the health protection point of view, so simple and reliable analytical methods must be available.
文摘CN-85 detector which covered with boric acid H3Bo3 pellete has been irradiated by thermal neutrons from (241Am-9Be) source with activity 12 Ci and neutron flux 105 n. cm-2. s-1. The irradiation times-TD for detector were 4 h, 8 h, 16 h and 24 h. The track detector has been etched with sodium hydroxide. After chemical etching of the irradiated CN-85 detector, the images have been taken from a digital camera connected to the optical microscope. Image processing for the output images has been performed using MATALB program, and these images were analyzed and we had found the following relations: a) The relation between summation of opened track or surface density for tracks (intensity-IT) varies with radius of opening (track radius-RT). b) The relation between the tracks number-NT varies with the tracks diameter-DT (in micrometer) and tracks area-AT. That analysis of image processing was obtained, and the track intensity-IT was decreased with increase of track radius-RT at all of the irradiation time-TD. And the track intensity-IT was increased with increasing irradiation time-TD (h) for different track radius-RT (0.4225, 0.845, 1.2675 and 1.69 μm). The study indicates the possibility of using the analysis of image processing to CN-85 detector for classification of α-particle emitters through limitation of radius of track-RT, in addition to the contribution of these techniques in preparation of nano-filters and nono-membrane in nanotechnology fields.
文摘Radongas concentrations in soil samples were determined from depths (surface, 15, and 30) cm for nine locations in Al-Dora refinery and surrounding area using “sealed can technique” and CR-39 solid state nuclear track detectors. The radon concentration in surface samples ranged from 810.08 to 1380.08 Bq/m3 with an average 1137.71 Bq/m3. The radon concentration in soil at the depth 15 cm was ranged from 490.5 to 1197.52 Bq/m3 with an average 732.78 Bq/m3 and at the depth 30 cm was ranged from 362.07 to 889.53 Bq/m3 with an average 529.41 Bq/m3. The surface exhalation rate in surface soil samples ranged was 0.44, to 0.99 Bq·m-2·h-1 with average 0.61 Bq·m-2·h-1. The surface exhalation rate in soil samples at the depth 15 cm was ranged from 0.22 to 0.64 Bq·m-2·h-1 with average 0.39 Bq·m-2·h-1. The surface exhalation rate in soil samples at the depth 15 cm was ranged from 0.22 to 0.64 Bq·m-2·h-1 with average 0.39 Bq·m-2·h-1. The surface exhalation rate and the mass exhalation rate in soil samples at the depth 30 cm ranged from 0.19, to 0.48 Bq·m-2·h-1 with average 0.28 Bq·m-2·h-1. The mass exhalation rate in surface soil samples ranged from 0.09 to 0.21 Bq·kg-1·h-1 with average 0.12 Bq·kg-1·h-1. The mass exhalation rate in soil samples from depth 15 cm was ranged from 0.046 to 0.14 Bq·kg-1·h-1 with average 0.08 Bq·kg-1·h-1. The mass exhalation rate in soil samples at the depth 30 cm was ranged from 0.042 to 0.1 Bq·kg-1·h-1 with average 0.06 Bq·kg-1·h-1.
文摘This paper provides a theoretical study and calculation of the specific detectivity-D* limit of photovoltaic (PV) mid-wave infrared (MWIR) PbSe n+-p junction detectors operating at both room temperature and TE-cooled temperature. For a typical PbSe p-type doping concentration of 2 × 1017 cm-3 and with high quantum efficiency, the D* limits of a photovoltaic PbSe n+-p junction detector are shown to be 2.8 × 1010 HZ1/2/W and 3.7 × 1010 HZ1/2/W at 300 K and 240 K, with cut-off wavelength of 4.5 μm and 5.0 μm, respectively. It is almost one magnitude higher than the current practical MWIR PV detector. Above 244 K, the detector is Johnson noise limited, and below 191 K the detector reaches background limited infrared photodetector (BLIP) D*. With optimization of carrier concentration, D* and BLIP temperature could be further increased.
文摘In this research we try to investigate the optimum etching time for the tracks originate in (CR-39) solid state nuclear track detector after irradiated with alpha source (<sup>241</sup>Am) using three different etching techniques: the traditional method (water bath), microwaves and ultrasound devices. The track etching parameters: bulk etch rate (V<sub>B</sub>), track etch rate (V<sub>T</sub>), track etch rate ratio evaluates (V), critical angle (θ<sub>C</sub>), and etching efficiency (η) were calculated in this research. It’s seen that the optimum etching time was ranging with (60 - 150 min), (20 - 30 min) and (60 - 120 min) when etching with water bath, microwave and ultrasound respectively. Also we observed that the critical angle was (24.29) when etching CR-39 detector with microwave. This value is lower than the critical angles values for the detector etched with water bath or ultrasound;thus it can be the optimum magnitude because its decrease leads to increasing the number of the tracks appeared in the detector and the etching efficiency.
文摘In the metrology of radon, an environmental lung carcinogen, the integrated measurements necessary for epidemiological studies are made very often using the tracks detector LR 115 type 2. For dosimetric analysis, the etched tracks from radon alpha particles on this detector are usually counted by means of an optical microscope or a spark counter. An optimal reading of the track densities which must be converted into radon concentrations, can’t be done without a good mastery of the mode of operation and use of these devices. Furthermore, investigations to know as to whether or not each of those can be used to determine radon concentration are necessary. These are the objectives of the present work in which LR 115 samples exposed to radon for at least 3 months, were chemically developed under standard conditions and read. The track densities obtained with the microscope are very much higher than those of the counter for each sample. These results are consistent with those published by other authors. However, each of these devices can be used interchangeably for alpha tracks counting, as both provide radon concentrations with a very good linear correlation coefficient of 0.95 taking into account their respective calibration factors for the reading of this detector. In addition, the saturation phenomenon for the spark counter reading of LR 115 detector occurs beyond 11,000 tr/cm<sup>2</sup>, a density never reached during our environmental radon measurements.
文摘Just as lead-based perovskites that are hot in solar cell preparation, Bi-based perovskites have demonstrated excellent performance in direct X-ray detection, especially the Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> single crystals (SCs). However, compared with lead-halide perovskites, one challenge for the Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> SCs for X-ray detection application is that it is difficult to prepare large-sized and high-quality SCs. Therefore, how to get a large area with a high-quality wafer is also as important as Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> growth method research. Here, different anti-solvents are used for the preparation of poly-crystalline powder with the Antisolvents precipitation (A) method, as a control, High-energy ball milling (B) was also used to prepare poly-crystalline powders. The resultant two types of Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> wafer exhibit a micro-strain of 1.21 × 10<sup>-3</sup>, a resistivity of 5.13 × 10<sup>8</sup> Ω cm and a microstrain of 1.21 × 10<sup>-3</sup>, a resistivity of 2.21 × 10<sup>9</sup> Ω cm. As a result, an X-ray detector based on the high-quality Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> wafer exhibits excellent dose rate linearity, a sensitivity of 588 μC·Gyairs<sup>-1</sup>·cm<sup>-2</sup> and a limit of detection (LoD) of 76 nGyair·s<sup>-1</sup>.
文摘In order to evaluate the electromagnetic environment of 5G base station, measurement and evaluation of the electromagnetic environment are studied. The 12 measuring points are chosen on the roof, inside and outside of the building, which has a 5G base station on the top. The electric field intensity, magnetic field intensity, and power density have been measured. The measurement methods include background measurement and work measurement. Background measurement is the measurement of environmental electromagnetic field (EMF) before the installation of 5G base station while the working measurement is the measurement after the installation of 5G base station. The evaluation methods include t-test for qualitative evaluation and electromagnetic gain for quantitative evaluation. The results show that the electromagnetic environment after the installation of 5G base station in most places is different from that in the background. And the environmental electromagnetic fields in certain parts are lower than those in the background. The conclusions are as follows: 1) The electromagnetic environment of 5G base station is far lower than the control limit of the national standard and conforms to the national standard;2) The electromagnetic environment of 5G base station has little impact on the electromagnetic environment;3) It is not sufficient to assume that 5G is harmful to health without the results of the epidemiological investigation;4) Before the construction of 5G base station, do background EMF detection, which can provide support for future evaluation.
文摘The effect of gamma on nuclear track detector type PM-355 (at the dose range 200 to 1600 kGy) and thermal neutron (flux 105 n·cm-2·s-1) was calculated by using of two irradiation methods. First method (G + N) was an irradiation PM-355 detector by gamma radiation and then irradiation by thermal neutrons, and another method (N + G) was irradiated by thermal neutrons and then gamma radiation. FTIR-spectroscopy was used to measure the change in deferent of transmission percent ΔT% at the wavenumber 1260 cm-1 with wavenumber 2962 cm-1 [ΔT%]1260-2962 and wavenumber 1138 cm-1 [ΔT%]1260-1138. The values of [ΔT%]1260-2962 and [ΔT%]1260-1138 were increasing with the increase of gamma irradiation with maximum response at 820 kGy and then drop after this dose until to 1600 kGy. This study determined the linear equations relation between the effect of gamma radiation on PM-355 detector and the change of [ΔT%]1260-2962 and [ΔT%]1260-1138, and this change appeared in (N + G) irradiation method better than in (G + N) irradiation method. The appearance of wavenumber 2964 cm-1 in (G + N) irradiation method referred to alkyl asymmetry C-H bond stretched out of skelated plane after changes in chemical structure of PM-355 detector by gamma or neutrons radiation.
文摘In this paper a new type of passive neutron detector based on the already existing one, CR39, is described. Its operation was verified by three different neutron sources: an Americium-Beryllium (Am241-Be) source;a TRIGA type nuclear reactor;and a fast neutron reactor called TAPIRO. The obtained results, reported here, positively confirm its operation and the accountability of the new developed detecting technique.
文摘In the present work, we have measured the radon gas concentrations in tap water samples are taken directly from drinking tap water in sites houses being carried in Thi-Qar governorate by using nuclear track detector (CR-39). The results of measurements have shown that the highest average radon concentration in water samples is found in AL-Refai region which is equal to (0.223 ± 0.03 Bq/L), while the lowest average radon gas concentration is found in AL-Fajr region which is equal to (0.108 ± 0.01 Bq/L), with an average value of (0.175 ± 0.03 Bq/L). The highest value of annual effective dose (AED) in tap water samples is found in AL-Refai region, which is equal to (0.814 μSv/y), while the lowest value of (AED) is found in AL-Fajr region which is equal to (0.394 μSv/y), with an average value of (0.640 ± 0.1 μSv/y). The present results have shown that radon gas concentrations in tap water samples are less than the recommended international value (11.1 Bq/L). There for tap water in all the studied sites in Thi-Qar governorate is safe as for as radon concentration being concerned.
文摘Through the introduction of the anti-corrosion test schemes, the test equipments and the test procedure for three kinds of basal slop protection materials including fence, mixed stump and geo-textile, this paper comes to a conclusion about the analysis of the anti-corrosion test, revealing that among all of the common basal slop protection materials, mixed stump and fence are with Class II anti-corrosion property, while the geo-textile is with the first-class anti-corrosion property.
文摘In this article, we reported that carmofur could be induced by some solvent to produce conformational alteration. Ultraviolet (UV) spectra were used to study the conformation alteration of carmofur. Upon the addition of acid in the some solvent, UV spectroscopy of carmofur could change gradually. When base was added to this system, UV spectroscopy of carmofur could return to the original state, and the change process was reversible. The variable temperature 1H and 13C-NMR spectrum were used to testify that temperature did not have any effect on the conformation alteration of carmofur in Acetonitrile: Trifluoroacetic-acid (9:1). These two conformers of carmofur were structurally stable in Acetonitrile: Trifluoroacetic-acid (9:1).
文摘In this study, we used strippable LR 115 type 2 which is a Solid State Nuclear Track Detector (SSNTD) widely known for radon gas detection and measurement. The removed thickness of the active layer of samples of this SSNTD, were determined by measuring the average initial thickness (before etching) and residual thickness after 80 to 135 minutes chemical etching in the standard conditions, using an electronic comparator. These results allowed the calculation of the bulk etch rate of this detector in a simple way. The mean value obtained is (3.21 ± 0.21) μm/h. This value is in close agreement with those reported by different authors. It is an important parameter for alpha track counting on the sensitive surface of this polymeric detector after chemical etching because track density depends extremely on its removed layer. This SSNTD was then used for environmental radon gas monitoring in Côte d’Ivoire.