The efficient photo-response mechanism is one of the key factors in the commercialization of dye-sensitized solar cells in a bid to satisfy renewable energy demands. Progress in green technology has put solar energy o...The efficient photo-response mechanism is one of the key factors in the commercialization of dye-sensitized solar cells in a bid to satisfy renewable energy demands. Progress in green technology has put solar energy on the front burner as a provider of clean and affordable energy for a sustainable society. We report the synthesis of a novel Schiff base with optical transparency in the visible and near IR region of the solar spectrum that can find application in the DSSCs photo-response mechanism. The synthesized crystal exhibited features that could handle some of the shortcomings of dye-sensitized solar cells which include wide band solar spectrum absorption and capability for swift charge transfer within the photoelectrodes. The synthesized Schiff base was characterized using x-ray diffractometer, UV/Visible spectrometer, Frontier transmission infrared spectrometer and conductometer. XRD data revealed the grown crystal to have an average crystallite size of 2.08 nm with average microstrain value of about 269.43. The FT-IR recorded transmission wave ѵ (CO) at 1207.7 cm<sup>−1</sup> while dominant wave occurred at ѵ1654.9 and ѵ1592.3 cm<sup>−1</sup> relating to ѵ (CN) stretching and ѵ (NH) bending respectively were observed. The IR spectrum revealed the bonding species and a probable molecular structure of 2,6-bis(benzyloxy)pyridine. The UV/Visible spectra convoluted to maximum peak within the near IR region suggesting that 2,6-bis(benzyloxy)pyridine can absorb both the visible and near IR region while its electrical conductivity was determined to be 4.58 µS/cm. The obtained result of the present study revealed promising characteristics of a photosensitizer that can find application in the photo-response mechanism of DSSCs.展开更多
Carbon graphite is a crystalline form of carbon consisting of layers of hexagonal carbon atoms arranged in a two-dimensional “graphene” structure. Graphene layers are stacked on top of each other, forming a three-di...Carbon graphite is a crystalline form of carbon consisting of layers of hexagonal carbon atoms arranged in a two-dimensional “graphene” structure. Graphene layers are stacked on top of each other, forming a three-dimensional structure with a high degree of anisotropy. The carbon atoms within each layer are linked together by strong covalent bonds, creating a strong, stable lattice structure. However, the layers themselves are held together by weak van der Waals forces, enabling them to slide easily over each other. The properties of carbon graphite are highly dependent on the orientation and alignment of the graphene layers. When the layers are aligned parallel to each other, the material exhibits high strength and stiffness along the alignment direction, but is weaker and more flexible in other directions. Carbon graphite is used in a variety of applications where high strength, rigidity and electrical conductivity are required. Some common applications include electrical contacts, electric motor brushes, and as a structural material in aerospace and defense applications. The aim of our work is to describe the structure of graphite, its physical and chemical properties and its applications.展开更多
Glancing Angle X-ray Diffraction (GAXRD) is introduced as a direct, non-destructive, surface-sensitive technique for analysis of thin films. The method was applied to polycrystalline thin films (namely, titanium oxide...Glancing Angle X-ray Diffraction (GAXRD) is introduced as a direct, non-destructive, surface-sensitive technique for analysis of thin films. The method was applied to polycrystalline thin films (namely, titanium oxide, zinc selenide, cadmium selenide and combinations thereof) obtained by electrochemical growth, in order to determine the composition of ultra-thin surface layers, to estimate film thickness, and perform depth profiling of multilayered heterostructures. The experimental data are treated on the basis of a simple absorption-diffraction model involving the glancing angle of X-ray incidence.展开更多
Considerable interest in hydrogen bonding involving chalcogen has been growing since the IUPAC committee has redefined hydrogen bonding. Not only the focus is on unconventional acceptors, but also on donors not discus...Considerable interest in hydrogen bonding involving chalcogen has been growing since the IUPAC committee has redefined hydrogen bonding. Not only the focus is on unconventional acceptors, but also on donors not discussed before. It has been mentioned in previous studies that the proton of the H-C group could be involved in hydrogen bonding, but with conventional acceptors. In this study, we explored the ability of hydrogen bond formation of Se, S and Te acceptors with the H-C donor using Cambridge Structural Database in conjunction with Ab Initio calculations. In the CSD, there are respectively 256, 6249 and 11 R1,R2,-C=Se, R1,R2,-C=S and R1,R2,-C=Te structures that form hydrogen bonds, in which the N,N groups are majority. Except for C=S acceptor which can form a hydrogen bond with its C, C group, both C=Se and C=Te acceptors could form a hydrogen bond only with N,C and N,N groups. CSD analysis shows very similar d (norm) around -0.04 Å, while DFT-calculated interaction for N,C and N,N groups are also similar. Both interaction distances derived from CSD analysis and DFT-calculated interaction energies demonstrate that the acceptors form stable complexes with H-CF3. Besides hydrogen bonds, dispersion interactions are forces stabilizing the complexes since their contribution can reach 50%. Analysis of intra-molecular geometries and Ab Initio partial charges show that this bonding stems from resonance induced C<sup>δ+</sup>=X<sup>δ-</sup> dipoles. In many respects, both C=Se, C=S and C=Te are similar to C=S, with similar d (norm) and calculated interaction strengths.展开更多
Applying the Density Function Theory (DFT) combined with LCAO basis set and employing the B3LYP hybrid functional, the optimized geometrical parameters, electronic properties, as well as the Infrared and Raman spectra...Applying the Density Function Theory (DFT) combined with LCAO basis set and employing the B3LYP hybrid functional, the optimized geometrical parameters, electronic properties, as well as the Infrared and Raman spectra for wurtzite-ZnO structure were investigated. Prior to computing, ZnO thin film prepared by the spray pyrolysis method is characterized by X-ray diffraction using Rietveld refinement. This analysis shows that ZnO has hexagonal wurtzite structure (P6<sub>3</sub>mc) with lattice parameters, a = 3.2467 and c = 5.2151 Åin good agreement with our predicted optimized geometry. Atomic force microscopy (AFM), Raman spectroscopy and UV-Vis-NIR spectrophotometry techniques are used to explore morphological, optical and vibrational properties of the sprayed ZnO thin film. The computed band gap is in excellent agreement with that deduced from UV-Vis transmission . The simulated infrared and Raman spectra were also calculated, and a good agreement with the measured spectra is obtained. Finally, a detailed interpretation of the infrared and Raman spectra is reported.展开更多
The title compound, FeCl<sub>4</sub>(C<sub>5</sub>N<sub>2</sub>H<sub>6</sub>)(C<sub>5</sub>N<sub>2</sub>H<sub>5</sub>) consists of tw...The title compound, FeCl<sub>4</sub>(C<sub>5</sub>N<sub>2</sub>H<sub>6</sub>)(C<sub>5</sub>N<sub>2</sub>H<sub>5</sub>) consists of two [(C<sub>5</sub>N<sub>2</sub>H<sub>6</sub>) (C<sub>5</sub>N<sub>2</sub>H<sub>5</sub>)]<sup>+</sup> organic cations and [FeCl<sub>4</sub>]<sup>-</sup> anion. The geometry of the iron ion is tetrahedral, formed by four chlorine atoms. The complex was characterized by single crystal X-ray diffraction, Fourier Transform Infrared spectroscopy, thermal analysis and UV-Visible spectroscopy. Hirshfeld surface analysis was also used for understanding the intermolecular interactions in the crystal packing. Single-crystal X-ray diffraction analysis indicates that this complex crystallizes in the monoclinic system, P2<sub>1</sub>/c space group with a = 7.598 (3) Å, b = 13.694 (4) Å, c = 17.105 (5) Å, <i>β</i><i> </i>= 97.203 (6)° V = 1765.7 (10) Å<sup>3</sup> and Z = 4. The [FeCl<sub>4</sub>]<sup>-</sup> anion and [(C<sub>5</sub>N<sub>2</sub>H<sub>6</sub>)(C<sub>5</sub>N<sub>2</sub>H<sub>5</sub>)]<sup>+</sup> cations are linked through three-dimensional hydrogen-bonding network consisting of N-H...Cl and π-π interactions. Hirshfeld surface analysis and the related 2D fingerprint plots reveal that the complex is dominated by N-H...Cl contacts.展开更多
The title compound 4’,9’,4”,9”-tetra-tert-butyl-1’,6’,1”,6”-tetramethoxy-2,5-dithia[3.3] metabiphenylophane was synthesized as a calixarene like large-sized metacyclophane from the corresponding 3,3’-bis(chlo...The title compound 4’,9’,4”,9”-tetra-tert-butyl-1’,6’,1”,6”-tetramethoxy-2,5-dithia[3.3] metabiphenylophane was synthesized as a calixarene like large-sized metacyclophane from the corresponding 3,3’-bis(chloromethyl)-5,5’-bis(1,1-dimethylethyl)-2,2’-dimethoxy-1,1’-biphenyl and 3,3’-bis (mercaptomethyl)-5,5’-bis(1,1-dimethylethyl)-2,2’-dimethoxy-1,1’-biphenyl via an intermolecular condensation reaction. The compound was characterized using 1H NMR spectroscopy and mass spectrometry. Its exact conformational structure was determined via single crystal X-ray diffraction analysis. The compound has quite strained 1,2-alternate like structure because of its two high dihedral angled and rigid biphenyl parts in the crystal. The crystal includes the two isomers as two different 1,2-alternate like conformers, and the ratio of the two isomers is 78:22.展开更多
The interference of human heat shock protein 90 (HSP90) in many signalling networks associated with cancer progression makes it an important drug target. In the present work, we investigated the binding ability of 9 s...The interference of human heat shock protein 90 (HSP90) in many signalling networks associated with cancer progression makes it an important drug target. In the present work, we investigated the binding ability of 9 selenoderivatives of geldanamycin (GMDSe) at the N-terminal domain of HSP90 derived from Protein Data Bank (PDB code: 1YET) based on ligand-protein docking. All selenoderivatives interacted positively with HSP90, yet the binding strength decreased when replacing monovalent oxygen in position 1 (GMDSe1) or 9 (GMDSe9). Hydrogen-bonding and lipophilic interactions between selenoderivatives and amino acid residues in the inhibitor site of HSP90 were thermodynamically the main forces driving the binding stability. Molecular electrostatic potential surfaces of the selenoderivatives showed marked non polar areas, which were probably involved in the lipophilic interactions with the hydrophobic residues of amino acids. Interestingly, the amino acid residues forming the hydrogen bonds with GMD were also involved in the hydrogen-bonding interactions with the selenoderivatives. Moreover, HSP90 interacted with the GMDSe6 and GMDSe7 selenoderivatives stronger than with GMD, while maintaining lipophilic interactions and hydrogen bonds with amino acid residues like Asp93, which are catalytically crucial for therapeutic properties of HSP90 inhibitors. This finding should guide further studies of pharmacophore properties of GMD selenoderivatives in order to explore their therapeutic properties. It is noteworthy that selenium has been suggested to reduce the risk of various types of cancers.展开更多
A novel chiral Nickel (II) complex of N-(2-pyridylmethyl)-L-alanine (Hpyala) <b>1</b> has been prepared and structurally characterized by elemental analysis, FT-IR, UV-visible, TGA and single crystal X-ray...A novel chiral Nickel (II) complex of N-(2-pyridylmethyl)-L-alanine (Hpyala) <b>1</b> has been prepared and structurally characterized by elemental analysis, FT-IR, UV-visible, TGA and single crystal X-ray diffraction techniques. Complex <b>1</b> crystallizes in an orthorhombic P2<sub>1</sub>2<sub>1</sub>2<sub>1</sub> space group. The nickel (II) centre in the complex adopts a distorted octahedral geometry. This compound has been seen to exhibit structural diversity resulting from the number of lattice water molecules. The photoluminescent properties of this compound which have also been investigated, indicates the potential application in luminescence.展开更多
Viologens (<i>N,N'</i>-dimethyl-4,4-bipyridinium) are advanced functional materials, found important applications in electrochromic devices, molecular machines, organic batteries, and carbohydrate oxid...Viologens (<i>N,N'</i>-dimethyl-4,4-bipyridinium) are advanced functional materials, found important applications in electrochromic devices, molecular machines, organic batteries, and carbohydrate oxidation catalysts in alkaline fuel. In this article, we investigated the design, synthesis and photophysical properties of <i>N,N'</i>-dimethyl-2,5-Bis(pyridinium)oxadiazole <b>4</b> and its precursor 2,5- Bis(pyridine)oxadiazole<b> 2</b>. The crystal structure and photophysical properties of viologen <b>4</b> and precursor <b>2</b> have been determined. The viologen molecule <b>4</b> crystallized in monoclinic form, space group <i>P</i>2<sub>1</sub>/<i>n</i> with four molecules in unit cell. Precursor molecule <b>2</b> also crystalized in monoclinic form, space group <i>C</i>2/<i>c</i> with four molecules in unit cell. From X-rd data, we found three cations in the molecular structure of viologen molecule <b>4</b>, which is unusual in viologens. In the three-dimensional molecular packing diagram of molecule <b>4</b>, the three cations and iodate anions are stabilized by C···C, C···I, N···I, N···H, H···I, N—H···I and C—H···I. The dihedral angle between planes having oxadiazole and two benzene rings are 5°and 8°, suggesting the molecule <b>4</b> is a slightly strained one. The molecular structure of precursor molecule <b>2</b> stabilized by C···C and N···H short contacts between the molecules. The molecule <b>4</b> displayed strong absorbance at 315 nm and emissions between 390 - 410 nm.展开更多
Lead iodide is an important inorganic solid for fundamental research and possible technological applications and is considered to be a potential room temperature nuclear radiation detector. In lead iodide the phenomen...Lead iodide is an important inorganic solid for fundamental research and possible technological applications and is considered to be a potential room temperature nuclear radiation detector. In lead iodide the phenomenon of polytypism is posing an interesting problem of phase transformations amongst its various polytypic modifications. The transformations have also been observed even when the crystals are stored for few months. It causes deterioration in functioning of PbI2 devices. Taking into account the known structures of PbI2 and the data available on the mode of growth and storage of crystals, it has been concluded that purified melt grown crystals of PbI2 are the best suited for nuclear radiation detectors.展开更多
Dichroic behaviors of layered ReS2 have been characterized using angular dependent polarizedabsorption and resistivity measurements in the van der Waal plane. The angular dependent optical and electrical measurements ...Dichroic behaviors of layered ReS2 have been characterized using angular dependent polarizedabsorption and resistivity measurements in the van der Waal plane. The angular dependent optical and electrical measurements are carried out with angles ranging from θ= 0°(E || b) to θ= 90°(E ^b) with respect to the layer crystal’s b-axis. The angular de pendence of polarized energy gaps of ReS2 shows a sinusoidal variation of energies from ~1.341 eV (E ||b to ~1.391 eV (E ^ b). The experimental evidence of polarized energy gap leaves ReS2 apotential usage for fabrication of a polarized optical switch suitable for polarized optical communication in nearinfrared (NIR) region. Angular dependence of resistivities of ReS2 in?the vander Waal plane has also been evaluated. The relationship of inplane resistivities shows a sinusoidallike variation from θ= 0°(E ||b) to 90°(E ^ b) and repeated periodically to 360°. The experimental results of optical and electrical measurements indicated that ReS2 is not only an opticaldichroic layer but also an electricaldichroism material presented in the layer plane.展开更多
Experimental crystallographic structural parameters of a range of metaled meso-substituted and unsubstituted porphyrins were reviewed to show how far the meso-substitution by any functional group and the insertion of ...Experimental crystallographic structural parameters of a range of metaled meso-substituted and unsubstituted porphyrins were reviewed to show how far the meso-substitution by any functional group and the insertion of metal in the porphyrins core macrocycle may affect the geometry. The analysis of twists and angles has shown two kinds of distortions: external [T(C<sup>β</sup>-C<sup>α</sup>-C<sup>meso</sup>-X<sup>n</sup>) and T(C<sup>β</sup>-C<sup>α</sup>-C<sup>meso</sup>-C<sup>α</sup>)] and internal [T(N<sup>m</sup>-C<sup>α</sup>-C<sup>meso</sup>-X<sup>n</sup>) and T(N<sup>n</sup>-C<sup>α</sup>-C<sup>meso</sup>-C<sup>α</sup>)] with averages of [+6°and –6°] and [–5°and +5°], respectively. In the meso-substituted case, the external and internal twists C<sup>β</sup>-C<sup>α</sup>-C<sup>meso</sup>-X and N-C<sup>α</sup>-C<sup>meso</sup>-X, respectively are oppositely orientated. Similar effect is observed in meso-unsubstituted of C<sup>β</sup>-C<sup>α</sup>- C<sup>meso</sup>-H and N-C<sup>α</sup>-C<sup>meso</sup>-H. However, the external distortions are more significant than internal. Considering the same order, the limit of distortions is [97°and 132°(–48°)] for external and [91°(–89°) and 52°] for internal. In the two cases, the substituents have opposite directions of distortions. The meso-substituted porphyrins have a high limit of twisting than usubstituted one, depending of the weight of substituents. The average of the bond angular deformations is 168°, almost planar. However, the limit of angular deformation is 94°.展开更多
The absolute configuration of mitomycin C was determined?by X-ray single crystal diffraction?(CuKα), and a new?crystalline?dihydrate of mitomycin C had been prepared. The?experiment?result?provides?a definitive answe...The absolute configuration of mitomycin C was determined?by X-ray single crystal diffraction?(CuKα), and a new?crystalline?dihydrate of mitomycin C had been prepared. The?experiment?result?provides?a definitive answer?to the real absolute configuration of mitomycin C and may put an end to the dispute?that baffles?researchers for decades.?At the same time, some contentious structures?about the mitomycin C in?American Pharmacopoeia?USP36-NF31,?Chinese pharmacopoeia?2015?edtion?and numbers of?literatures are marked. The absolute configuration?is?also verified?by?1D (1H?and?13C) and 2D (HSQC, HMBC,?1H-1H?COSY?and?NOESY) NMR studies?indirectly. Powder X-ray diffraction (PXRD) pattern of the?mitomycin C dihydrate?is similar to that calculated for?it, which?suggests that the purity?of?sample?is excellent.展开更多
Self-consistent ab initio calculations are performed on the structural, electronic and optical properties of wurtzite ZnO. The Full Potential Linearized Augmented Plane Wave (FP-LAPW) method is applied to solve the Ko...Self-consistent ab initio calculations are performed on the structural, electronic and optical properties of wurtzite ZnO. The Full Potential Linearized Augmented Plane Wave (FP-LAPW) method is applied to solve the Kohn-Sham equations. Results are obtained by using the PBE-GGA and mBJLDA exchange correlation potentials. The energy and charge convergence have been examined to study the ground state properties. The band structure and Density of States (DOS) diagrams are plotted from the calculated equilibrium lattice parameters. The general profiles of the optical spectra and the optical properties, including the real and imaginary part of dielectric function, reflectivity, refractive index, absorption co-efficient, electron energy loss function and optical conductivity of wurtzite ZnO under ambient conditions are discussed. The optical anisotropy is studied through the calculated optical constants, namely dielectric function and refractive index along three different crystallographic axes.展开更多
Circoviridae represent a growing family of small animal viruses. Some of these viruses have veterinary and medical importance, although, a vast amount of these newly discovered viruses have unknown effects on their ho...Circoviridae represent a growing family of small animal viruses. Some of these viruses have veterinary and medical importance, although, a vast amount of these newly discovered viruses have unknown effects on their hosts. The capsid-associated protein (Cap) of circoviruses is of interest because of its role in viral structure, immune evasion, host cell entry, and nuclear shuttling of viral components. The structure of the porcine circovirus 2 (PCV2) Cap has been solved and offered insight to these functions. Based on the crystallographic PCV2 Cap structure, models from circoviruses isolated from avian, fish, and mammalian hosts have been constructed and analyzed to better understand the roles of these proteins in the virus family. A high degree of conservation is observed in the models, however, the surface antigens differ among viruses. This is likely a reflection of the small genome harbored by circoviruses, and therefore the requirement of their few proteins to carry out specific vital functions, while maintaining enough variation to successfully infect their hosts. Here we describe the putative structures of a range of Cap proteins from circoviruses based on the crystallographic determination of porcine Cap, identifying key regions for function and inhibition of crystal formation.展开更多
High-temperature superconductivity in ceramic oxides is a new technology in which advances are occurring at a rapid pace. Here, the author describes some properties of a new nano crystalline ceramic Type II supercondu...High-temperature superconductivity in ceramic oxides is a new technology in which advances are occurring at a rapid pace. Here, the author describes some properties of a new nano crystalline ceramic Type II superconductor, PbSrCaCuO. Type II superconductors are usually made of metal alloys or complex oxide ceramics. The PSCCO perovskite phase structure was prepared by the conventional solid state reaction technique. In order to show the viability of the proposed method, super-conducting powder was prepared in special furnace. The sample was analyzed by X-ray Diffraction (XRD), Particle size determination, SEM and EDX. The comparison of XRD results with JCPDS files confirmed the orthorhombic structure of the sample with a ≠ b ≠ c and α = β = γ = 90°. Scanning electron microscopy (SEM) studies revealed that its particle size is in the nanometer range. It also confirmed the calculated value of particle size from Debye Scherrer’s formula. EDX spectrum shows the elements of the sample. X-ray instrumental peak broadening analysis was used to evaluate the size and lattice strain by the Williamson-Hall Plot method.展开更多
The reaction studied in this work is the synthesis of nanometric size calcium carbonate by carbonation of a suspension of lime, which represents the most common industrial route. The carbonation was proceeded in a pil...The reaction studied in this work is the synthesis of nanometric size calcium carbonate by carbonation of a suspension of lime, which represents the most common industrial route. The carbonation was proceeded in a pilot batch reactor. This article presents a method for the determination of nucleation and crystal growth rates of calcium carbonate by following two macroscopic parameters: the mass production rate by precipitation and the specific surface area. The results give a constant nucleation rate around 4 × 1015m-3 ·s-1 and a decreasing crystal growth rate between 0.2 and 2 × 10-10 m·s-1. It also provides the main characteristics of the monoparticle size distributions (i.e. the mean particle sizes and in situ coefficient of variation) in the agglomerates, which cannot be obtained by other known methods. For the carbonation carried out in this work, the mean mass particle size at the end of the reaction is about 300 nm and the coefficient of variation of 0.28 indicates a narrow particle size distribution of the monoparticles.展开更多
Treatment of 1,3-diphenyl-1,3-propanedione 1a with europium (III) chloride in the presence of piperidine results in the halide ligands exchange giving newly piperidinium tetrakis (1,3-diphenyl-1,3-propanedionato)europ...Treatment of 1,3-diphenyl-1,3-propanedione 1a with europium (III) chloride in the presence of piperidine results in the halide ligands exchange giving newly piperidinium tetrakis (1,3-diphenyl-1,3-propanedionato)europate(III) complex 2a. The complex was characterized by 1H-NMR, positive FAB-mass, and Elemental Analysis. The exact molecular structure of 2a was determined by single crystal X-ray diffraction with the monoclinic space group Cc (centrosymmetric, No.13). The large cavity sizes of the complex 2a facilitated the inclusion of water and benzene solvate molecules. The other two different crystals 2b, 2c having two water molecules and one benzene moleculewere obtained by the crystallization in different solvents and the exact molecular structures were determined by single crystal X-ray diffraction analysis with space groups P21/n (centrosymmetric, No.14), and P21/n (centrosymmetric, No.14), respectively. The eight coordinate structures of the complexes in the three crystals were slightly different due to the crystal packing and the existence of the solvent molecule(s). The photoluminescence studies indicated that four β-diketone ligands acted as strong antenna ligands and transferred the absorbed energy to europium (III) ion, consequently red luminescence was observed. These strong emissions wereattributed to the 5D0 → 7F2 transition of Europium (III) ions under UV excitation. The photoluminescence spectrum of the three crystals was almost same in solid as well as in solution.展开更多
A novel buffer layer consists of titanium oxide grown on a-sapphire by low-pressure chemical vapor deposition using titanum-tetra-iso-propoxide and oxygen gas was used for ZnO epitaxial growth at temperature as low as...A novel buffer layer consists of titanium oxide grown on a-sapphire by low-pressure chemical vapor deposition using titanum-tetra-iso-propoxide and oxygen gas was used for ZnO epitaxial growth at temperature as low as 340℃ by plasma-assisted epitaxy using radio-frequency oxygen-gas plasma. XRD and RHEED indicated (0001)Ti2O3 layer in corundum crystal system was epitaxially grown on the substrate in an in-plane relationship of [1-100]Ti2O3// [0001]Al2O3 by uniaxial phase-lock system. Growth behavior of ZnO layer was significantly dependent on the Ti2O3 buffer-layer thickness, for example, dense columnar ZnO-grains were grown on the buffer layer thinner than 10 nm but the hexagonal pyramid-like grains were formed on the thin buffer layers below 2 nm. RHEED observations showed ZnO layer including the pyramid-like grains was epitaxially grown with single-domain on the thin buffer layer of 0.8 nm in the in-plane relationship of [1-100]ZnO//[1-100]Ti2O3//[0001]Al2O3, whereas the multi-domain was included in ZnO layer on the buffer layer above 10 nm.展开更多
文摘The efficient photo-response mechanism is one of the key factors in the commercialization of dye-sensitized solar cells in a bid to satisfy renewable energy demands. Progress in green technology has put solar energy on the front burner as a provider of clean and affordable energy for a sustainable society. We report the synthesis of a novel Schiff base with optical transparency in the visible and near IR region of the solar spectrum that can find application in the DSSCs photo-response mechanism. The synthesized crystal exhibited features that could handle some of the shortcomings of dye-sensitized solar cells which include wide band solar spectrum absorption and capability for swift charge transfer within the photoelectrodes. The synthesized Schiff base was characterized using x-ray diffractometer, UV/Visible spectrometer, Frontier transmission infrared spectrometer and conductometer. XRD data revealed the grown crystal to have an average crystallite size of 2.08 nm with average microstrain value of about 269.43. The FT-IR recorded transmission wave ѵ (CO) at 1207.7 cm<sup>−1</sup> while dominant wave occurred at ѵ1654.9 and ѵ1592.3 cm<sup>−1</sup> relating to ѵ (CN) stretching and ѵ (NH) bending respectively were observed. The IR spectrum revealed the bonding species and a probable molecular structure of 2,6-bis(benzyloxy)pyridine. The UV/Visible spectra convoluted to maximum peak within the near IR region suggesting that 2,6-bis(benzyloxy)pyridine can absorb both the visible and near IR region while its electrical conductivity was determined to be 4.58 µS/cm. The obtained result of the present study revealed promising characteristics of a photosensitizer that can find application in the photo-response mechanism of DSSCs.
文摘Carbon graphite is a crystalline form of carbon consisting of layers of hexagonal carbon atoms arranged in a two-dimensional “graphene” structure. Graphene layers are stacked on top of each other, forming a three-dimensional structure with a high degree of anisotropy. The carbon atoms within each layer are linked together by strong covalent bonds, creating a strong, stable lattice structure. However, the layers themselves are held together by weak van der Waals forces, enabling them to slide easily over each other. The properties of carbon graphite are highly dependent on the orientation and alignment of the graphene layers. When the layers are aligned parallel to each other, the material exhibits high strength and stiffness along the alignment direction, but is weaker and more flexible in other directions. Carbon graphite is used in a variety of applications where high strength, rigidity and electrical conductivity are required. Some common applications include electrical contacts, electric motor brushes, and as a structural material in aerospace and defense applications. The aim of our work is to describe the structure of graphite, its physical and chemical properties and its applications.
文摘Glancing Angle X-ray Diffraction (GAXRD) is introduced as a direct, non-destructive, surface-sensitive technique for analysis of thin films. The method was applied to polycrystalline thin films (namely, titanium oxide, zinc selenide, cadmium selenide and combinations thereof) obtained by electrochemical growth, in order to determine the composition of ultra-thin surface layers, to estimate film thickness, and perform depth profiling of multilayered heterostructures. The experimental data are treated on the basis of a simple absorption-diffraction model involving the glancing angle of X-ray incidence.
文摘Considerable interest in hydrogen bonding involving chalcogen has been growing since the IUPAC committee has redefined hydrogen bonding. Not only the focus is on unconventional acceptors, but also on donors not discussed before. It has been mentioned in previous studies that the proton of the H-C group could be involved in hydrogen bonding, but with conventional acceptors. In this study, we explored the ability of hydrogen bond formation of Se, S and Te acceptors with the H-C donor using Cambridge Structural Database in conjunction with Ab Initio calculations. In the CSD, there are respectively 256, 6249 and 11 R1,R2,-C=Se, R1,R2,-C=S and R1,R2,-C=Te structures that form hydrogen bonds, in which the N,N groups are majority. Except for C=S acceptor which can form a hydrogen bond with its C, C group, both C=Se and C=Te acceptors could form a hydrogen bond only with N,C and N,N groups. CSD analysis shows very similar d (norm) around -0.04 Å, while DFT-calculated interaction for N,C and N,N groups are also similar. Both interaction distances derived from CSD analysis and DFT-calculated interaction energies demonstrate that the acceptors form stable complexes with H-CF3. Besides hydrogen bonds, dispersion interactions are forces stabilizing the complexes since their contribution can reach 50%. Analysis of intra-molecular geometries and Ab Initio partial charges show that this bonding stems from resonance induced C<sup>δ+</sup>=X<sup>δ-</sup> dipoles. In many respects, both C=Se, C=S and C=Te are similar to C=S, with similar d (norm) and calculated interaction strengths.
文摘Applying the Density Function Theory (DFT) combined with LCAO basis set and employing the B3LYP hybrid functional, the optimized geometrical parameters, electronic properties, as well as the Infrared and Raman spectra for wurtzite-ZnO structure were investigated. Prior to computing, ZnO thin film prepared by the spray pyrolysis method is characterized by X-ray diffraction using Rietveld refinement. This analysis shows that ZnO has hexagonal wurtzite structure (P6<sub>3</sub>mc) with lattice parameters, a = 3.2467 and c = 5.2151 Åin good agreement with our predicted optimized geometry. Atomic force microscopy (AFM), Raman spectroscopy and UV-Vis-NIR spectrophotometry techniques are used to explore morphological, optical and vibrational properties of the sprayed ZnO thin film. The computed band gap is in excellent agreement with that deduced from UV-Vis transmission . The simulated infrared and Raman spectra were also calculated, and a good agreement with the measured spectra is obtained. Finally, a detailed interpretation of the infrared and Raman spectra is reported.
文摘The title compound, FeCl<sub>4</sub>(C<sub>5</sub>N<sub>2</sub>H<sub>6</sub>)(C<sub>5</sub>N<sub>2</sub>H<sub>5</sub>) consists of two [(C<sub>5</sub>N<sub>2</sub>H<sub>6</sub>) (C<sub>5</sub>N<sub>2</sub>H<sub>5</sub>)]<sup>+</sup> organic cations and [FeCl<sub>4</sub>]<sup>-</sup> anion. The geometry of the iron ion is tetrahedral, formed by four chlorine atoms. The complex was characterized by single crystal X-ray diffraction, Fourier Transform Infrared spectroscopy, thermal analysis and UV-Visible spectroscopy. Hirshfeld surface analysis was also used for understanding the intermolecular interactions in the crystal packing. Single-crystal X-ray diffraction analysis indicates that this complex crystallizes in the monoclinic system, P2<sub>1</sub>/c space group with a = 7.598 (3) Å, b = 13.694 (4) Å, c = 17.105 (5) Å, <i>β</i><i> </i>= 97.203 (6)° V = 1765.7 (10) Å<sup>3</sup> and Z = 4. The [FeCl<sub>4</sub>]<sup>-</sup> anion and [(C<sub>5</sub>N<sub>2</sub>H<sub>6</sub>)(C<sub>5</sub>N<sub>2</sub>H<sub>5</sub>)]<sup>+</sup> cations are linked through three-dimensional hydrogen-bonding network consisting of N-H...Cl and π-π interactions. Hirshfeld surface analysis and the related 2D fingerprint plots reveal that the complex is dominated by N-H...Cl contacts.
文摘The title compound 4’,9’,4”,9”-tetra-tert-butyl-1’,6’,1”,6”-tetramethoxy-2,5-dithia[3.3] metabiphenylophane was synthesized as a calixarene like large-sized metacyclophane from the corresponding 3,3’-bis(chloromethyl)-5,5’-bis(1,1-dimethylethyl)-2,2’-dimethoxy-1,1’-biphenyl and 3,3’-bis (mercaptomethyl)-5,5’-bis(1,1-dimethylethyl)-2,2’-dimethoxy-1,1’-biphenyl via an intermolecular condensation reaction. The compound was characterized using 1H NMR spectroscopy and mass spectrometry. Its exact conformational structure was determined via single crystal X-ray diffraction analysis. The compound has quite strained 1,2-alternate like structure because of its two high dihedral angled and rigid biphenyl parts in the crystal. The crystal includes the two isomers as two different 1,2-alternate like conformers, and the ratio of the two isomers is 78:22.
文摘The interference of human heat shock protein 90 (HSP90) in many signalling networks associated with cancer progression makes it an important drug target. In the present work, we investigated the binding ability of 9 selenoderivatives of geldanamycin (GMDSe) at the N-terminal domain of HSP90 derived from Protein Data Bank (PDB code: 1YET) based on ligand-protein docking. All selenoderivatives interacted positively with HSP90, yet the binding strength decreased when replacing monovalent oxygen in position 1 (GMDSe1) or 9 (GMDSe9). Hydrogen-bonding and lipophilic interactions between selenoderivatives and amino acid residues in the inhibitor site of HSP90 were thermodynamically the main forces driving the binding stability. Molecular electrostatic potential surfaces of the selenoderivatives showed marked non polar areas, which were probably involved in the lipophilic interactions with the hydrophobic residues of amino acids. Interestingly, the amino acid residues forming the hydrogen bonds with GMD were also involved in the hydrogen-bonding interactions with the selenoderivatives. Moreover, HSP90 interacted with the GMDSe6 and GMDSe7 selenoderivatives stronger than with GMD, while maintaining lipophilic interactions and hydrogen bonds with amino acid residues like Asp93, which are catalytically crucial for therapeutic properties of HSP90 inhibitors. This finding should guide further studies of pharmacophore properties of GMD selenoderivatives in order to explore their therapeutic properties. It is noteworthy that selenium has been suggested to reduce the risk of various types of cancers.
文摘A novel chiral Nickel (II) complex of N-(2-pyridylmethyl)-L-alanine (Hpyala) <b>1</b> has been prepared and structurally characterized by elemental analysis, FT-IR, UV-visible, TGA and single crystal X-ray diffraction techniques. Complex <b>1</b> crystallizes in an orthorhombic P2<sub>1</sub>2<sub>1</sub>2<sub>1</sub> space group. The nickel (II) centre in the complex adopts a distorted octahedral geometry. This compound has been seen to exhibit structural diversity resulting from the number of lattice water molecules. The photoluminescent properties of this compound which have also been investigated, indicates the potential application in luminescence.
文摘Viologens (<i>N,N'</i>-dimethyl-4,4-bipyridinium) are advanced functional materials, found important applications in electrochromic devices, molecular machines, organic batteries, and carbohydrate oxidation catalysts in alkaline fuel. In this article, we investigated the design, synthesis and photophysical properties of <i>N,N'</i>-dimethyl-2,5-Bis(pyridinium)oxadiazole <b>4</b> and its precursor 2,5- Bis(pyridine)oxadiazole<b> 2</b>. The crystal structure and photophysical properties of viologen <b>4</b> and precursor <b>2</b> have been determined. The viologen molecule <b>4</b> crystallized in monoclinic form, space group <i>P</i>2<sub>1</sub>/<i>n</i> with four molecules in unit cell. Precursor molecule <b>2</b> also crystalized in monoclinic form, space group <i>C</i>2/<i>c</i> with four molecules in unit cell. From X-rd data, we found three cations in the molecular structure of viologen molecule <b>4</b>, which is unusual in viologens. In the three-dimensional molecular packing diagram of molecule <b>4</b>, the three cations and iodate anions are stabilized by C···C, C···I, N···I, N···H, H···I, N—H···I and C—H···I. The dihedral angle between planes having oxadiazole and two benzene rings are 5°and 8°, suggesting the molecule <b>4</b> is a slightly strained one. The molecular structure of precursor molecule <b>2</b> stabilized by C···C and N···H short contacts between the molecules. The molecule <b>4</b> displayed strong absorbance at 315 nm and emissions between 390 - 410 nm.
文摘Lead iodide is an important inorganic solid for fundamental research and possible technological applications and is considered to be a potential room temperature nuclear radiation detector. In lead iodide the phenomenon of polytypism is posing an interesting problem of phase transformations amongst its various polytypic modifications. The transformations have also been observed even when the crystals are stored for few months. It causes deterioration in functioning of PbI2 devices. Taking into account the known structures of PbI2 and the data available on the mode of growth and storage of crystals, it has been concluded that purified melt grown crystals of PbI2 are the best suited for nuclear radiation detectors.
文摘Dichroic behaviors of layered ReS2 have been characterized using angular dependent polarizedabsorption and resistivity measurements in the van der Waal plane. The angular dependent optical and electrical measurements are carried out with angles ranging from θ= 0°(E || b) to θ= 90°(E ^b) with respect to the layer crystal’s b-axis. The angular de pendence of polarized energy gaps of ReS2 shows a sinusoidal variation of energies from ~1.341 eV (E ||b to ~1.391 eV (E ^ b). The experimental evidence of polarized energy gap leaves ReS2 apotential usage for fabrication of a polarized optical switch suitable for polarized optical communication in nearinfrared (NIR) region. Angular dependence of resistivities of ReS2 in?the vander Waal plane has also been evaluated. The relationship of inplane resistivities shows a sinusoidallike variation from θ= 0°(E ||b) to 90°(E ^ b) and repeated periodically to 360°. The experimental results of optical and electrical measurements indicated that ReS2 is not only an opticaldichroic layer but also an electricaldichroism material presented in the layer plane.
文摘Experimental crystallographic structural parameters of a range of metaled meso-substituted and unsubstituted porphyrins were reviewed to show how far the meso-substitution by any functional group and the insertion of metal in the porphyrins core macrocycle may affect the geometry. The analysis of twists and angles has shown two kinds of distortions: external [T(C<sup>β</sup>-C<sup>α</sup>-C<sup>meso</sup>-X<sup>n</sup>) and T(C<sup>β</sup>-C<sup>α</sup>-C<sup>meso</sup>-C<sup>α</sup>)] and internal [T(N<sup>m</sup>-C<sup>α</sup>-C<sup>meso</sup>-X<sup>n</sup>) and T(N<sup>n</sup>-C<sup>α</sup>-C<sup>meso</sup>-C<sup>α</sup>)] with averages of [+6°and –6°] and [–5°and +5°], respectively. In the meso-substituted case, the external and internal twists C<sup>β</sup>-C<sup>α</sup>-C<sup>meso</sup>-X and N-C<sup>α</sup>-C<sup>meso</sup>-X, respectively are oppositely orientated. Similar effect is observed in meso-unsubstituted of C<sup>β</sup>-C<sup>α</sup>- C<sup>meso</sup>-H and N-C<sup>α</sup>-C<sup>meso</sup>-H. However, the external distortions are more significant than internal. Considering the same order, the limit of distortions is [97°and 132°(–48°)] for external and [91°(–89°) and 52°] for internal. In the two cases, the substituents have opposite directions of distortions. The meso-substituted porphyrins have a high limit of twisting than usubstituted one, depending of the weight of substituents. The average of the bond angular deformations is 168°, almost planar. However, the limit of angular deformation is 94°.
文摘The absolute configuration of mitomycin C was determined?by X-ray single crystal diffraction?(CuKα), and a new?crystalline?dihydrate of mitomycin C had been prepared. The?experiment?result?provides?a definitive answer?to the real absolute configuration of mitomycin C and may put an end to the dispute?that baffles?researchers for decades.?At the same time, some contentious structures?about the mitomycin C in?American Pharmacopoeia?USP36-NF31,?Chinese pharmacopoeia?2015?edtion?and numbers of?literatures are marked. The absolute configuration?is?also verified?by?1D (1H?and?13C) and 2D (HSQC, HMBC,?1H-1H?COSY?and?NOESY) NMR studies?indirectly. Powder X-ray diffraction (PXRD) pattern of the?mitomycin C dihydrate?is similar to that calculated for?it, which?suggests that the purity?of?sample?is excellent.
文摘Self-consistent ab initio calculations are performed on the structural, electronic and optical properties of wurtzite ZnO. The Full Potential Linearized Augmented Plane Wave (FP-LAPW) method is applied to solve the Kohn-Sham equations. Results are obtained by using the PBE-GGA and mBJLDA exchange correlation potentials. The energy and charge convergence have been examined to study the ground state properties. The band structure and Density of States (DOS) diagrams are plotted from the calculated equilibrium lattice parameters. The general profiles of the optical spectra and the optical properties, including the real and imaginary part of dielectric function, reflectivity, refractive index, absorption co-efficient, electron energy loss function and optical conductivity of wurtzite ZnO under ambient conditions are discussed. The optical anisotropy is studied through the calculated optical constants, namely dielectric function and refractive index along three different crystallographic axes.
文摘Circoviridae represent a growing family of small animal viruses. Some of these viruses have veterinary and medical importance, although, a vast amount of these newly discovered viruses have unknown effects on their hosts. The capsid-associated protein (Cap) of circoviruses is of interest because of its role in viral structure, immune evasion, host cell entry, and nuclear shuttling of viral components. The structure of the porcine circovirus 2 (PCV2) Cap has been solved and offered insight to these functions. Based on the crystallographic PCV2 Cap structure, models from circoviruses isolated from avian, fish, and mammalian hosts have been constructed and analyzed to better understand the roles of these proteins in the virus family. A high degree of conservation is observed in the models, however, the surface antigens differ among viruses. This is likely a reflection of the small genome harbored by circoviruses, and therefore the requirement of their few proteins to carry out specific vital functions, while maintaining enough variation to successfully infect their hosts. Here we describe the putative structures of a range of Cap proteins from circoviruses based on the crystallographic determination of porcine Cap, identifying key regions for function and inhibition of crystal formation.
文摘High-temperature superconductivity in ceramic oxides is a new technology in which advances are occurring at a rapid pace. Here, the author describes some properties of a new nano crystalline ceramic Type II superconductor, PbSrCaCuO. Type II superconductors are usually made of metal alloys or complex oxide ceramics. The PSCCO perovskite phase structure was prepared by the conventional solid state reaction technique. In order to show the viability of the proposed method, super-conducting powder was prepared in special furnace. The sample was analyzed by X-ray Diffraction (XRD), Particle size determination, SEM and EDX. The comparison of XRD results with JCPDS files confirmed the orthorhombic structure of the sample with a ≠ b ≠ c and α = β = γ = 90°. Scanning electron microscopy (SEM) studies revealed that its particle size is in the nanometer range. It also confirmed the calculated value of particle size from Debye Scherrer’s formula. EDX spectrum shows the elements of the sample. X-ray instrumental peak broadening analysis was used to evaluate the size and lattice strain by the Williamson-Hall Plot method.
文摘The reaction studied in this work is the synthesis of nanometric size calcium carbonate by carbonation of a suspension of lime, which represents the most common industrial route. The carbonation was proceeded in a pilot batch reactor. This article presents a method for the determination of nucleation and crystal growth rates of calcium carbonate by following two macroscopic parameters: the mass production rate by precipitation and the specific surface area. The results give a constant nucleation rate around 4 × 1015m-3 ·s-1 and a decreasing crystal growth rate between 0.2 and 2 × 10-10 m·s-1. It also provides the main characteristics of the monoparticle size distributions (i.e. the mean particle sizes and in situ coefficient of variation) in the agglomerates, which cannot be obtained by other known methods. For the carbonation carried out in this work, the mean mass particle size at the end of the reaction is about 300 nm and the coefficient of variation of 0.28 indicates a narrow particle size distribution of the monoparticles.
文摘Treatment of 1,3-diphenyl-1,3-propanedione 1a with europium (III) chloride in the presence of piperidine results in the halide ligands exchange giving newly piperidinium tetrakis (1,3-diphenyl-1,3-propanedionato)europate(III) complex 2a. The complex was characterized by 1H-NMR, positive FAB-mass, and Elemental Analysis. The exact molecular structure of 2a was determined by single crystal X-ray diffraction with the monoclinic space group Cc (centrosymmetric, No.13). The large cavity sizes of the complex 2a facilitated the inclusion of water and benzene solvate molecules. The other two different crystals 2b, 2c having two water molecules and one benzene moleculewere obtained by the crystallization in different solvents and the exact molecular structures were determined by single crystal X-ray diffraction analysis with space groups P21/n (centrosymmetric, No.14), and P21/n (centrosymmetric, No.14), respectively. The eight coordinate structures of the complexes in the three crystals were slightly different due to the crystal packing and the existence of the solvent molecule(s). The photoluminescence studies indicated that four β-diketone ligands acted as strong antenna ligands and transferred the absorbed energy to europium (III) ion, consequently red luminescence was observed. These strong emissions wereattributed to the 5D0 → 7F2 transition of Europium (III) ions under UV excitation. The photoluminescence spectrum of the three crystals was almost same in solid as well as in solution.
文摘A novel buffer layer consists of titanium oxide grown on a-sapphire by low-pressure chemical vapor deposition using titanum-tetra-iso-propoxide and oxygen gas was used for ZnO epitaxial growth at temperature as low as 340℃ by plasma-assisted epitaxy using radio-frequency oxygen-gas plasma. XRD and RHEED indicated (0001)Ti2O3 layer in corundum crystal system was epitaxially grown on the substrate in an in-plane relationship of [1-100]Ti2O3// [0001]Al2O3 by uniaxial phase-lock system. Growth behavior of ZnO layer was significantly dependent on the Ti2O3 buffer-layer thickness, for example, dense columnar ZnO-grains were grown on the buffer layer thinner than 10 nm but the hexagonal pyramid-like grains were formed on the thin buffer layers below 2 nm. RHEED observations showed ZnO layer including the pyramid-like grains was epitaxially grown with single-domain on the thin buffer layer of 0.8 nm in the in-plane relationship of [1-100]ZnO//[1-100]Ti2O3//[0001]Al2O3, whereas the multi-domain was included in ZnO layer on the buffer layer above 10 nm.