It is important to understand the impact of wing-morphing on aerodynamic performance in the study of flapping-wing flight of birds and insects. We use a flapping plate hinged with a trailing-edge flap as a simplified ...It is important to understand the impact of wing-morphing on aerodynamic performance in the study of flapping-wing flight of birds and insects. We use a flapping plate hinged with a trailing-edge flap as a simplified model for flexible/morphing wings in hovering. The trailing-edge flapping motion is opti- mized by an adjoint-based approach. The optimized configuration suggests that the trailing-edge flap can substantially enhance the overall lift. Further analysis indicates that the lift enhancement by the trailing- edge flapping is from the change of circulation in two ways: the local circulation change by the rotational motion of the flap, and the modification of vortex shedding process by the relative location between the trailing-edge flao and leading-edge main plate.展开更多
在航空飞行中,低空风切变极易对处在起飞爬升或进近着陆阶段的飞机带来安全隐患,严重时会导致飞机失速甚至坠毁。低空风切变往往还具有持续时间短、尺度小、突发性强等特点。因此在中国民航和通用航空业高速发展的背景下,加强对飞机遭...在航空飞行中,低空风切变极易对处在起飞爬升或进近着陆阶段的飞机带来安全隐患,严重时会导致飞机失速甚至坠毁。低空风切变往往还具有持续时间短、尺度小、突发性强等特点。因此在中国民航和通用航空业高速发展的背景下,加强对飞机遭遇低空风切变的数值模拟仿真和研究具有重要意义和实际价值。采用SST模型并使用FLUENT计算尾涡演化,通过构建H-B尾涡耗散二维模型,应用ANSYS FLUENT UDF(user defined function)编译环境侧风不同的7种情况进行尾涡耗散机理的数值模拟,通过对比成都双流机场实地探测的尾涡发现在非线性垂直切变影响下侧风和涡诱导速度的叠加会导致尾涡对周围的压力分布不对称,引起尾涡对倾斜。展开更多
The sophisticated structures of flapping insect wings make it challenging to study the role of wing flexibility in insect flight.In this study,a mass-spring system is used to model wing structural dynamics as a thin,f...The sophisticated structures of flapping insect wings make it challenging to study the role of wing flexibility in insect flight.In this study,a mass-spring system is used to model wing structural dynamics as a thin,flexible membrane supported by a network of veins.The vein mechanical properties can be estimated based on their diameters and the Young's modulus of cuticle.In order to analyze the effect of wing flexibility,the Young's modulus is varied to make a comparison between two different wing models that we refer to as flexible and highly flexible.The wing models are coupled with a pseudo-spectral code solving the incompressible Navier–Stokes equations,allowing us to investigate the influence of wing deformation on the aerodynamic efficiency of a tethered flapping bumblebee.Compared to the bumblebee model with rigid wings,the one with flexible wings flies more efficiently,characterized by a larger lift-to-power ratio.展开更多
文摘It is important to understand the impact of wing-morphing on aerodynamic performance in the study of flapping-wing flight of birds and insects. We use a flapping plate hinged with a trailing-edge flap as a simplified model for flexible/morphing wings in hovering. The trailing-edge flapping motion is opti- mized by an adjoint-based approach. The optimized configuration suggests that the trailing-edge flap can substantially enhance the overall lift. Further analysis indicates that the lift enhancement by the trailing- edge flapping is from the change of circulation in two ways: the local circulation change by the rotational motion of the flap, and the modification of vortex shedding process by the relative location between the trailing-edge flao and leading-edge main plate.
文摘在航空飞行中,低空风切变极易对处在起飞爬升或进近着陆阶段的飞机带来安全隐患,严重时会导致飞机失速甚至坠毁。低空风切变往往还具有持续时间短、尺度小、突发性强等特点。因此在中国民航和通用航空业高速发展的背景下,加强对飞机遭遇低空风切变的数值模拟仿真和研究具有重要意义和实际价值。采用SST模型并使用FLUENT计算尾涡演化,通过构建H-B尾涡耗散二维模型,应用ANSYS FLUENT UDF(user defined function)编译环境侧风不同的7种情况进行尾涡耗散机理的数值模拟,通过对比成都双流机场实地探测的尾涡发现在非线性垂直切变影响下侧风和涡诱导速度的叠加会导致尾涡对周围的压力分布不对称,引起尾涡对倾斜。
基金Financial support from the Agence Nationale de la Recherche(ANR)(Grant 15-CE40-0019)and Deutsche Forschungsgemeinschaft(DFG)(Grant SE 824/26-1),project AIFITHPC resources of IDRIS under the allocation No.2018-91664 attributed by Grand Equipement National de Calcul Intensif(GENCI)+2 种基金Centre de Calcul Intensif d'Aix-Marseille is acknowledged for granting access to its high performance computing resources financed by the project Equip@Meso(No.ANR-10-EQPX-29-01)financial support granted by the ministeres des Affaires etrangeres et du developpement international(MAEDI)et de l'Education nationale et l'enseignement superieur,de la recherche et de l'innovation(MENESRI),the Deutscher Akademischer Austauschdienst(DAAD)within the French-German Procope project FIFITfinancial support from the JSPS KAKENHI Grant No.JP18K13693。
文摘The sophisticated structures of flapping insect wings make it challenging to study the role of wing flexibility in insect flight.In this study,a mass-spring system is used to model wing structural dynamics as a thin,flexible membrane supported by a network of veins.The vein mechanical properties can be estimated based on their diameters and the Young's modulus of cuticle.In order to analyze the effect of wing flexibility,the Young's modulus is varied to make a comparison between two different wing models that we refer to as flexible and highly flexible.The wing models are coupled with a pseudo-spectral code solving the incompressible Navier–Stokes equations,allowing us to investigate the influence of wing deformation on the aerodynamic efficiency of a tethered flapping bumblebee.Compared to the bumblebee model with rigid wings,the one with flexible wings flies more efficiently,characterized by a larger lift-to-power ratio.