为了提高交通控制算法的适应性和鲁棒性,缓解城市交通拥堵,提出了一种改进的D3QN(dueling double deep Q-network, D3QN)自适应信号控制方法。首先对几种强化学习自适应控制模式进行分析,然后在固定步长动作模式的基础上提出了不定步长...为了提高交通控制算法的适应性和鲁棒性,缓解城市交通拥堵,提出了一种改进的D3QN(dueling double deep Q-network, D3QN)自适应信号控制方法。首先对几种强化学习自适应控制模式进行分析,然后在固定步长动作模式的基础上提出了不定步长动作模式,并构造了一种基于空间占有率的奖励函数;最后使用Sumo软件,对中山市东区街道某交叉口分别在稳定流和随机流场景下进行仿真。仿真结果表明:该方法具有良好的收敛性,有效地降低了延误时间和排队长度。展开更多
文摘为了提高交通控制算法的适应性和鲁棒性,缓解城市交通拥堵,提出了一种改进的D3QN(dueling double deep Q-network, D3QN)自适应信号控制方法。首先对几种强化学习自适应控制模式进行分析,然后在固定步长动作模式的基础上提出了不定步长动作模式,并构造了一种基于空间占有率的奖励函数;最后使用Sumo软件,对中山市东区街道某交叉口分别在稳定流和随机流场景下进行仿真。仿真结果表明:该方法具有良好的收敛性,有效地降低了延误时间和排队长度。