The effect of Ti ( C, N) on properties of low-carbon MgO - C bricks was investigated. The phase composition and the microstructure of the matrix of low-carbon MgO - C brick containing Ti ( C, N) were studied by XR...The effect of Ti ( C, N) on properties of low-carbon MgO - C bricks was investigated. The phase composition and the microstructure of the matrix of low-carbon MgO - C brick containing Ti ( C, N) were studied by XRD and SEM analysis together with EDS. The results showed that Ti ( C, N) distributed in the matrix of lowcarbon MgO - C brick uniformly after being treated at 1 600 ~C for 3 h in coke powder bed, and Ti (C, N) and MgO formed a solid solution. After the treatment at 1 600 ℃ for 3 h in coke powder bed, the bulk density and cold crushing strength of low-carbon MgO - C brick with Ti ( C, N) decreased, and the apparent porosity and linear change rate of specimens increased. The oxidation resistance of low-carbon MgO - C brick with Ti( C, N) was superior to that of low-carbon MgO - C brick with no additives, but inferior to that of low-car- bon MgO - C brick with Al powder. The slag resistance of the specimen with Ti ( C, N) was excellent as well.展开更多
Low-creep andalusite bricks are characterized by high refractoriness under load, good anti-creep property, high mechanical strength, low porosity, good thermal shock resistance, etc. In this study, low-creep andalusit...Low-creep andalusite bricks are characterized by high refractoriness under load, good anti-creep property, high mechanical strength, low porosity, good thermal shock resistance, etc. In this study, low-creep andalusite brick specimens were investigated in the lab using mullite, bauxite and andalusite. Andalusite with the different particle sizes were used in the experiment and the specimen with the best property was selected us the production standard. In addition, the industrial produced low-creep andalusite bricks were compared with other low-creep bricks. The results show that the developed low-creep andalusite bricks is an excellent material for hot blast stove.展开更多
文摘The effect of Ti ( C, N) on properties of low-carbon MgO - C bricks was investigated. The phase composition and the microstructure of the matrix of low-carbon MgO - C brick containing Ti ( C, N) were studied by XRD and SEM analysis together with EDS. The results showed that Ti ( C, N) distributed in the matrix of lowcarbon MgO - C brick uniformly after being treated at 1 600 ~C for 3 h in coke powder bed, and Ti (C, N) and MgO formed a solid solution. After the treatment at 1 600 ℃ for 3 h in coke powder bed, the bulk density and cold crushing strength of low-carbon MgO - C brick with Ti ( C, N) decreased, and the apparent porosity and linear change rate of specimens increased. The oxidation resistance of low-carbon MgO - C brick with Ti( C, N) was superior to that of low-carbon MgO - C brick with no additives, but inferior to that of low-car- bon MgO - C brick with Al powder. The slag resistance of the specimen with Ti ( C, N) was excellent as well.
文摘Low-creep andalusite bricks are characterized by high refractoriness under load, good anti-creep property, high mechanical strength, low porosity, good thermal shock resistance, etc. In this study, low-creep andalusite brick specimens were investigated in the lab using mullite, bauxite and andalusite. Andalusite with the different particle sizes were used in the experiment and the specimen with the best property was selected us the production standard. In addition, the industrial produced low-creep andalusite bricks were compared with other low-creep bricks. The results show that the developed low-creep andalusite bricks is an excellent material for hot blast stove.