As the bioelectrochemical system, the microbial fuel cell (MFC) and the microbial electrolysis cell (MEC) were developed to selectively recover Cu^2+ and Ni^2+ ions from wastewater. The wastewater was treated in...As the bioelectrochemical system, the microbial fuel cell (MFC) and the microbial electrolysis cell (MEC) were developed to selectively recover Cu^2+ and Ni^2+ ions from wastewater. The wastewater was treated in the cathode chambers of the system, in which Cu^2+ and Ni^2+ ions were removed by using the MFC and the MEC, respectively. At an initial Cu^2+ concentration of 500 mg· L^-1, removal efficiencies of Cu^2+ increased from 97.0%±1.8% to 99.0%±0.3% with the initial Ni^2+ concentrations from 250 to 1000 mg· L^-1, and maximum power densities increased from 3.1±0.5 to 5.4±0.6W.m-3. The Ni^2+ removal mass in the MEC increased from 6.84-0.2 to 20.54-1.5 mg with the increase of Ni^2+ concentrations. At an initial Ni^2+ concentration of 500 mg· L^-1, Cu^2+ removal etticiencies decreased from 99.1%±0.3% to 74.2%±3.8% with the initial Cu^2+ concentrations from 250 to 1000 mg -L1, and maximum power densities increased from 3.0±0.1 to 6.3±1.2W.m^-3. Subsequently, the Ni^2+ removal efficiencies decreased from 96.9%-4-3.1% to 73.3%4-5.4%. The results clearly demonstrated the feasibility of selective recovery of Cu2~ and Ni2~ from the wastewater using the bioelectrochemical system.展开更多
基金This work was partly supported by the National Natural Science Foundation of China (Grant Nos. 51039007, 51179212, and 51278500), the program of Guangzhou Science & Technology Department (No. 2012J4300115), and the research fund program of Guangdong provincial key laboratory of environmental pollution control and remediation technology (No. 2013K0002) the research fund program of key laboratory of water and air pollution control of Guangdong Province (No. GD2012A01).
文摘As the bioelectrochemical system, the microbial fuel cell (MFC) and the microbial electrolysis cell (MEC) were developed to selectively recover Cu^2+ and Ni^2+ ions from wastewater. The wastewater was treated in the cathode chambers of the system, in which Cu^2+ and Ni^2+ ions were removed by using the MFC and the MEC, respectively. At an initial Cu^2+ concentration of 500 mg· L^-1, removal efficiencies of Cu^2+ increased from 97.0%±1.8% to 99.0%±0.3% with the initial Ni^2+ concentrations from 250 to 1000 mg· L^-1, and maximum power densities increased from 3.1±0.5 to 5.4±0.6W.m-3. The Ni^2+ removal mass in the MEC increased from 6.84-0.2 to 20.54-1.5 mg with the increase of Ni^2+ concentrations. At an initial Ni^2+ concentration of 500 mg· L^-1, Cu^2+ removal etticiencies decreased from 99.1%±0.3% to 74.2%±3.8% with the initial Cu^2+ concentrations from 250 to 1000 mg -L1, and maximum power densities increased from 3.0±0.1 to 6.3±1.2W.m^-3. Subsequently, the Ni^2+ removal efficiencies decreased from 96.9%-4-3.1% to 73.3%4-5.4%. The results clearly demonstrated the feasibility of selective recovery of Cu2~ and Ni2~ from the wastewater using the bioelectrochemical system.