Oxygen usually plays crucial roles in tuning the phase structures and functionalities of complex oxides such as high temperature superconductivity, colossal magnetoresistance, catalysis, etc. Effective and considerabl...Oxygen usually plays crucial roles in tuning the phase structures and functionalities of complex oxides such as high temperature superconductivity, colossal magnetoresistance, catalysis, etc. Effective and considerable control of the oxygen content in those functional oxides could be highly desired. Here, using perovskite manganite(La0.5Sr0.5)MnO3 as a paradigm, we develop a new pathway to synthesize the epitaxial thin films assisted by an in-situ chemical process, where the oxygen content can be precisely controlled by varying oxidative activity tuned by the atmospheric temperature(Tatm)during the growth. A hidden metal-insulator transition(MIT)emerges due to the phase competition, which is never shown in the phase diagram of this classic manganite. The oxygenmediated interaction between Mn ions together with the change of carrier density might be responsible for this emerging phase, which is compatible with the results of firstprinciple calculations. This work demonstrates that, apart from traditional cation doping, a precise modulation of anion(O2-, S2-, etc.) may provide a new strategy to control phase structures and functionalities of epitaxial compound thin films.展开更多
Nanostructured manganese oxides (nano-MnO_(x)) have shown great promises as versatile agrochemicals in nano-enabled sustainable agriculture,owing to the coupled benefits of controlled release of dissolved Mn2+,an esse...Nanostructured manganese oxides (nano-MnO_(x)) have shown great promises as versatile agrochemicals in nano-enabled sustainable agriculture,owing to the coupled benefits of controlled release of dissolved Mn2+,an essential nutrient needed by plants,and oxidative destruction of environmental organic pollutants.Here,we show that three δ-MnO_(2)nanomaterials consisting of nanosheet-assembled flower-like nanospheres not only exhibit greater kinetics in citrate-promoted dissolution,but also are less prone to passivation,compared with three α-MnO_(2)nanowire materials.The better performance of the δ-MnO_(2)nanomaterials can be attributed to their higher abundance of surface unsaturated Mn atoms–particularly Mn(Ⅲ)–that is originated from their specific exposed facets and higher abundance of surface defects sites.Our results underline the great potential of modulating nanomaterial surface atomic configuration to improve their performance in sustainable agricultural applications.展开更多
基金financially supported by the National Key Research and Development Program of China (2016YFA0302300)the support from the National Natural Science Foundation of China (51332001)the Fundamental Research Funds for the Central Universities (2017EYT26)
文摘Oxygen usually plays crucial roles in tuning the phase structures and functionalities of complex oxides such as high temperature superconductivity, colossal magnetoresistance, catalysis, etc. Effective and considerable control of the oxygen content in those functional oxides could be highly desired. Here, using perovskite manganite(La0.5Sr0.5)MnO3 as a paradigm, we develop a new pathway to synthesize the epitaxial thin films assisted by an in-situ chemical process, where the oxygen content can be precisely controlled by varying oxidative activity tuned by the atmospheric temperature(Tatm)during the growth. A hidden metal-insulator transition(MIT)emerges due to the phase competition, which is never shown in the phase diagram of this classic manganite. The oxygenmediated interaction between Mn ions together with the change of carrier density might be responsible for this emerging phase, which is compatible with the results of firstprinciple calculations. This work demonstrates that, apart from traditional cation doping, a precise modulation of anion(O2-, S2-, etc.) may provide a new strategy to control phase structures and functionalities of epitaxial compound thin films.
基金supported by the National Key Research and Development Program of China (Nos. 2018YFC1800705 and 2019YFC1804202)the Fundamental Research Funds for the Central Universities (Nankai University 63211078)+1 种基金the Ministry of Education of China (No. T2017002)Tianjin Municipal Science and Technology Bureau (No. 20JCQNJC02050)。
文摘Nanostructured manganese oxides (nano-MnO_(x)) have shown great promises as versatile agrochemicals in nano-enabled sustainable agriculture,owing to the coupled benefits of controlled release of dissolved Mn2+,an essential nutrient needed by plants,and oxidative destruction of environmental organic pollutants.Here,we show that three δ-MnO_(2)nanomaterials consisting of nanosheet-assembled flower-like nanospheres not only exhibit greater kinetics in citrate-promoted dissolution,but also are less prone to passivation,compared with three α-MnO_(2)nanowire materials.The better performance of the δ-MnO_(2)nanomaterials can be attributed to their higher abundance of surface unsaturated Mn atoms–particularly Mn(Ⅲ)–that is originated from their specific exposed facets and higher abundance of surface defects sites.Our results underline the great potential of modulating nanomaterial surface atomic configuration to improve their performance in sustainable agricultural applications.