采用电荷分割方法设计了WSZ(Wedge-Strip and Zig)极紫外光探测器,其基于MCP的结构和单光子成像的特点使其在极弱光的探测方面具有独特的优势.设计了用于该探测器的快速三通道电荷放大电路和信号采集电路,以探测脉宽100-200ms、总...采用电荷分割方法设计了WSZ(Wedge-Strip and Zig)极紫外光探测器,其基于MCP的结构和单光子成像的特点使其在极弱光的探测方面具有独特的优势.设计了用于该探测器的快速三通道电荷放大电路和信号采集电路,以探测脉宽100-200ms、总电荷量1~20pC的电子脉冲.在真空争件下使用紫外光源对电路进行模拟试验,获得了峰值大小与阳极面板面积成比例的、噪音范围在10mV以内的三路脉冲信号.模拟实验结果证明,该探测器预计分辨率有望达到100μm×100μm.展开更多
GaN has been widely used in the fabrication of ultraviolet photodetectors because of its outstanding properties.In this paper,we report a graphene–GaN nanorod heterostructure photodetector with fast photoresponse in ...GaN has been widely used in the fabrication of ultraviolet photodetectors because of its outstanding properties.In this paper,we report a graphene–GaN nanorod heterostructure photodetector with fast photoresponse in the UV range.GaN nanorods were fabricated by a combination mode of dry etching and wet etching.Furthermore,a graphene–GaN nanorod heterostructure ultraviolet detector was fabricated and its photoelectric properties were measured.The device exhibits a fast photoresponse in the UV range.The rising time and falling time of the transient response were 13 and 8 ms,respectively.A high photovoltaic responsivity up to 13.9 A/W and external quantum efficiency up to 479%were realized at the UV range.The specific detectivity D*=1.44×10^(10) Jones was obtained at–1 V bias in ambient conditions.The spectral response was measured and the highest response was observed at the 360 nm band.展开更多
Manganese phosphorous selenium(MnPSe_(3)),as a representative of layered metal phosphorus trichalcogenides(MPTs),has gained significant attention due to its direct bandgap,high carrier mobility,large absorption coeffi...Manganese phosphorous selenium(MnPSe_(3)),as a representative of layered metal phosphorus trichalcogenides(MPTs),has gained significant attention due to its direct bandgap,high carrier mobility,large absorption coefficient,which indicate great potential in photoelectric application.Herein,high-quality two-dimensional(2D)MnPSe_(3) flakes were mechanically exfoliated from the corresponding bulk crystals synthesized by chemical vapor transport(CVT)methods.The systematic investigation was applied to the lattice vibrations of MnPSe_(3) via angle-resolved polarized Raman spectroscopy(ARPRS),and the Raman vibration modes were determined based on Raman selection rules and crystal symmetry.Impressively,the photodetectors based on 2D MnPSe_(3) flakes exhibit excellent photoresponse to the ultraviolet light with a responsivity up to 22.7 A W^(-1) and a detectivity of 2.4×10^(11) Jones.The high performance in the ultraviolet range signifies that 2D MnPSe_(3) is expected to be a powerful candidate for future ultraviolet photodetection.展开更多
A two-dimensional model of a 4H-SiC metal-semiconductor-metal(MSM) ultraviolet photodetector has been established using a self-consistent numerical calculation method.The structure-dependent spectral response of a 4...A two-dimensional model of a 4H-SiC metal-semiconductor-metal(MSM) ultraviolet photodetector has been established using a self-consistent numerical calculation method.The structure-dependent spectral response of a 4H-SiC MSM detector is calculated by solving Poisson's equation,the current continuity equation and the current density equation.The calculated results are verified with experimental data.With consideration of the reflection and absorption on the metal contacts,a detailed study involving various electrode heights(H),spacings (S) and widths(W) reveals conclusive results in device design.The mechanisms responsible for variations of responsivity with those parameters are analyzed.The findings show that responsivity is inversely proportional to electrode height and is enhanced with an increase of electrode spacing and width.In addition,the ultraviolet (UV)-to-visible rejection ratio is 103.By optimizing the device structure at 10 V bias,a responsivity as high as 180.056 mA/W,a comparable quantum efficiency of 77.93%and a maximum UV-to-visible rejection ratio of 1875 are achieved with a detector size of H = 50 nm,S =9μm and W = 3μm.展开更多
文摘采用电荷分割方法设计了WSZ(Wedge-Strip and Zig)极紫外光探测器,其基于MCP的结构和单光子成像的特点使其在极弱光的探测方面具有独特的优势.设计了用于该探测器的快速三通道电荷放大电路和信号采集电路,以探测脉宽100-200ms、总电荷量1~20pC的电子脉冲.在真空争件下使用紫外光源对电路进行模拟试验,获得了峰值大小与阳极面板面积成比例的、噪音范围在10mV以内的三路脉冲信号.模拟实验结果证明,该探测器预计分辨率有望达到100μm×100μm.
基金supported by the Science Foundation of Changchun University of Science and Technology under Grant No. 6141B010328
文摘GaN has been widely used in the fabrication of ultraviolet photodetectors because of its outstanding properties.In this paper,we report a graphene–GaN nanorod heterostructure photodetector with fast photoresponse in the UV range.GaN nanorods were fabricated by a combination mode of dry etching and wet etching.Furthermore,a graphene–GaN nanorod heterostructure ultraviolet detector was fabricated and its photoelectric properties were measured.The device exhibits a fast photoresponse in the UV range.The rising time and falling time of the transient response were 13 and 8 ms,respectively.A high photovoltaic responsivity up to 13.9 A/W and external quantum efficiency up to 479%were realized at the UV range.The specific detectivity D*=1.44×10^(10) Jones was obtained at–1 V bias in ambient conditions.The spectral response was measured and the highest response was observed at the 360 nm band.
基金supported by the National Natural Science Foundation of China(21825103)Hubei Provincial Natural Science Foundation(2019CFA002)+1 种基金the Fundamental Research Funds for the Central Universities(2019kfyXMBZ018)the support from the Analytical and Testing Center of Huazhong University of Science and Technology。
文摘Manganese phosphorous selenium(MnPSe_(3)),as a representative of layered metal phosphorus trichalcogenides(MPTs),has gained significant attention due to its direct bandgap,high carrier mobility,large absorption coefficient,which indicate great potential in photoelectric application.Herein,high-quality two-dimensional(2D)MnPSe_(3) flakes were mechanically exfoliated from the corresponding bulk crystals synthesized by chemical vapor transport(CVT)methods.The systematic investigation was applied to the lattice vibrations of MnPSe_(3) via angle-resolved polarized Raman spectroscopy(ARPRS),and the Raman vibration modes were determined based on Raman selection rules and crystal symmetry.Impressively,the photodetectors based on 2D MnPSe_(3) flakes exhibit excellent photoresponse to the ultraviolet light with a responsivity up to 22.7 A W^(-1) and a detectivity of 2.4×10^(11) Jones.The high performance in the ultraviolet range signifies that 2D MnPSe_(3) is expected to be a powerful candidate for future ultraviolet photodetection.
基金Project supported by the Pre-Research Foundation from the National Ministries and Commissions(Nos.51323040118,513080302)
文摘A two-dimensional model of a 4H-SiC metal-semiconductor-metal(MSM) ultraviolet photodetector has been established using a self-consistent numerical calculation method.The structure-dependent spectral response of a 4H-SiC MSM detector is calculated by solving Poisson's equation,the current continuity equation and the current density equation.The calculated results are verified with experimental data.With consideration of the reflection and absorption on the metal contacts,a detailed study involving various electrode heights(H),spacings (S) and widths(W) reveals conclusive results in device design.The mechanisms responsible for variations of responsivity with those parameters are analyzed.The findings show that responsivity is inversely proportional to electrode height and is enhanced with an increase of electrode spacing and width.In addition,the ultraviolet (UV)-to-visible rejection ratio is 103.By optimizing the device structure at 10 V bias,a responsivity as high as 180.056 mA/W,a comparable quantum efficiency of 77.93%and a maximum UV-to-visible rejection ratio of 1875 are achieved with a detector size of H = 50 nm,S =9μm and W = 3μm.