Electronic fibers used to fabricate wearable triboelectric nanogenerator(TENG) for harvesting human mechanical energy have been extensively explored. However, little attention is paid to their mutual advantages of env...Electronic fibers used to fabricate wearable triboelectric nanogenerator(TENG) for harvesting human mechanical energy have been extensively explored. However, little attention is paid to their mutual advantages of environmental friendliness, mechanical properties, and stability. Here, we report a super-strong, biodegradable, and washable cellulose-based conductive macrofibers, which is prepared by wet-stretching and wet-twisting bacterial cellulose hydrogel incorporated with carbon nanotubes and polypyrrole. The cellulose-based conductive macrofibers possess high tensile strength of 449 MPa(able to lift 2 kg weights), good electrical conductivity(~ 5.32 S cm^(-1)), and excellent stability(Tensile strength and conductivity only decrease by 6.7% and 8.1% after immersing in water for 1 day). The degradation experiment demonstrates macrofibers can be degraded within 108 h in the cellulase solution. The designed fabric-based TENG from the cellulose-base conductive macrofibers shows a maximum open-circuit voltage of 170 V, short-circuit current of 0.8 μA, and output power at 352 μW, which is capable of powering the commercial electronics by charging the capacitors. More importantly, the fabric-based TENGs can be attached to the human body and work as self-powered sensors to effectively monitor human motions. This study suggests the potential of biodegradable, super-strong, and washable conductive cellulose-based fiber for designing eco-friendly fabric-based TENG for energy harvesting and biomechanical monitoring.展开更多
基金financially supported by BRICS STI Framework Programme 3rd call 2019the National Key Research and Development Program of China(Grant No.2018YFE0123700)+3 种基金the National Natural Science Foundation of China(Grant Nos.51973076 and 52073031)State Key Laboratory of New Textile Materials and Advanced Processing Technologies(Grant No.FZ2021005)the Fundamental Research Funds for the Central Universities(Grant Nos.2020kfyXJJS035,WUT2018IVB006,and Z191100001119047)。
文摘Electronic fibers used to fabricate wearable triboelectric nanogenerator(TENG) for harvesting human mechanical energy have been extensively explored. However, little attention is paid to their mutual advantages of environmental friendliness, mechanical properties, and stability. Here, we report a super-strong, biodegradable, and washable cellulose-based conductive macrofibers, which is prepared by wet-stretching and wet-twisting bacterial cellulose hydrogel incorporated with carbon nanotubes and polypyrrole. The cellulose-based conductive macrofibers possess high tensile strength of 449 MPa(able to lift 2 kg weights), good electrical conductivity(~ 5.32 S cm^(-1)), and excellent stability(Tensile strength and conductivity only decrease by 6.7% and 8.1% after immersing in water for 1 day). The degradation experiment demonstrates macrofibers can be degraded within 108 h in the cellulase solution. The designed fabric-based TENG from the cellulose-base conductive macrofibers shows a maximum open-circuit voltage of 170 V, short-circuit current of 0.8 μA, and output power at 352 μW, which is capable of powering the commercial electronics by charging the capacitors. More importantly, the fabric-based TENGs can be attached to the human body and work as self-powered sensors to effectively monitor human motions. This study suggests the potential of biodegradable, super-strong, and washable conductive cellulose-based fiber for designing eco-friendly fabric-based TENG for energy harvesting and biomechanical monitoring.