In this study, a novel generator for the single-effect LiBr-H2O absorption chiller using solar energy was investigated. A dual-chamber vortex generator (DCVG) consisted of a lower chamber and an upper chamber. The hot...In this study, a novel generator for the single-effect LiBr-H2O absorption chiller using solar energy was investigated. A dual-chamber vortex generator (DCVG) consisted of a lower chamber and an upper chamber. The hot weak LiBr-H2O liquid entered the lower chamber tangentially through a small nozzle to create a strong vortex flow. Due to the rotating flow, the pressure was reduced toward the central portion of the lower chamber. Experiments were conducted under different solution flow rates and temperatures. The experimental results showed that the lower pressure developed in the lower chamber could reduce the saturated temperature and help the evaporation in the generator that is more heat could be utilized to generate more refrigerant vapor. When the inlet temperature was 90°C, the COP of a solar absorption chiller using the DCVG could reach 0.83, which was higher than of the conventional absorption chiller by 22%.展开更多
基金Supported by the Opening Foundation of Beijing Municipality
文摘In this study, a novel generator for the single-effect LiBr-H2O absorption chiller using solar energy was investigated. A dual-chamber vortex generator (DCVG) consisted of a lower chamber and an upper chamber. The hot weak LiBr-H2O liquid entered the lower chamber tangentially through a small nozzle to create a strong vortex flow. Due to the rotating flow, the pressure was reduced toward the central portion of the lower chamber. Experiments were conducted under different solution flow rates and temperatures. The experimental results showed that the lower pressure developed in the lower chamber could reduce the saturated temperature and help the evaporation in the generator that is more heat could be utilized to generate more refrigerant vapor. When the inlet temperature was 90°C, the COP of a solar absorption chiller using the DCVG could reach 0.83, which was higher than of the conventional absorption chiller by 22%.