From the view point of launch safety caused by fracture of propellant charge,this paper points out that the safety criterion of pressure wave is inadequate to evaluate the launch safety of propellant charge based on t...From the view point of launch safety caused by fracture of propellant charge,this paper points out that the safety criterion of pressure wave is inadequate to evaluate the launch safety of propellant charge based on the initial negative differential pressure and sensitivity tests.Generally,the maximum barrel pressure does not depend upon the intensity of pressure wave correspondingly.The pressure wave intensity can not describe the fracture degree of propellant charge in chamber and reflect the mechanical environment of propellant charge fracturing exactly and wholly.The evaluation criterion for launch safety of propellant charge should be built on the basis of depicting the fracture degree of propellant bed.展开更多
采用LS-DYNA对在药型罩上粘附隔板结构形成带尾翼型爆炸成型弹丸(explosively formed projectile,EFP)进行三维数值模拟,从药型罩微元压跨速度和压力的角度初步探讨了形成尾翼型EFP的机理,对同一直径的大锥角型、球缺型和弧锥结合型药...采用LS-DYNA对在药型罩上粘附隔板结构形成带尾翼型爆炸成型弹丸(explosively formed projectile,EFP)进行三维数值模拟,从药型罩微元压跨速度和压力的角度初步探讨了形成尾翼型EFP的机理,对同一直径的大锥角型、球缺型和弧锥结合型药型罩形成的尾翼型EFP进行了对比分析,三种结构药型罩均能形成较为明显的尾翼,其中大锥角型药型罩得到的EFP速度最高。数值计算结果表明,EFP尾翼数与药型罩上所粘贴的隔板数一致,三种不同结构药型罩上粘贴四个隔板,得到的尾翼数均为四个。通过实验,对贴隔板法形成尾翼EFP做了进一步验证,实验结果与数值模拟结果基本一致。展开更多
基金Sponsored by National Defence Prestudy Foundation of China(40406010401)
文摘From the view point of launch safety caused by fracture of propellant charge,this paper points out that the safety criterion of pressure wave is inadequate to evaluate the launch safety of propellant charge based on the initial negative differential pressure and sensitivity tests.Generally,the maximum barrel pressure does not depend upon the intensity of pressure wave correspondingly.The pressure wave intensity can not describe the fracture degree of propellant charge in chamber and reflect the mechanical environment of propellant charge fracturing exactly and wholly.The evaluation criterion for launch safety of propellant charge should be built on the basis of depicting the fracture degree of propellant bed.
文摘采用LS-DYNA对在药型罩上粘附隔板结构形成带尾翼型爆炸成型弹丸(explosively formed projectile,EFP)进行三维数值模拟,从药型罩微元压跨速度和压力的角度初步探讨了形成尾翼型EFP的机理,对同一直径的大锥角型、球缺型和弧锥结合型药型罩形成的尾翼型EFP进行了对比分析,三种结构药型罩均能形成较为明显的尾翼,其中大锥角型药型罩得到的EFP速度最高。数值计算结果表明,EFP尾翼数与药型罩上所粘贴的隔板数一致,三种不同结构药型罩上粘贴四个隔板,得到的尾翼数均为四个。通过实验,对贴隔板法形成尾翼EFP做了进一步验证,实验结果与数值模拟结果基本一致。