Fuzzy Logic Control (FLC) is a promising control strategy in welding process control due to its ability for solving control problem with uncertainty as well as its independence on the analytical mathematics model. How...Fuzzy Logic Control (FLC) is a promising control strategy in welding process control due to its ability for solving control problem with uncertainty as well as its independence on the analytical mathematics model. However, in basic FLC, the fuzzy rule relies heavily on the experts’ (e.g. advanced welders’) experience. In addition to this, the membership function for fuzzy set is non adaptive, i.e. it remains unchanged as long as they are determined by experience or other means. For welding process, which is time variable systems and strong disturbance exists in it, fixed membership function may not guarantee the required system performance, and attempts should be made to improve the system performance by adopting adaptive membership function. Therefore, the automatically determination of the fuzzy rule and in process adaptation of membership function are required for the advanced welding process control. This paper discussed the possibility by using the combination between FLC and neural network (NN) to realize the above propose. The adaptation of membership function as well as the self organizing of fuzzy rule are realized by the self learning and competitiveness of the NN. Taking GTAW process welds bead width regulating system as the controlled plant, the proposed algorithm was testified for such a process. Computer simulations showed the improvement of the system characteristics.展开更多
文摘Fuzzy Logic Control (FLC) is a promising control strategy in welding process control due to its ability for solving control problem with uncertainty as well as its independence on the analytical mathematics model. However, in basic FLC, the fuzzy rule relies heavily on the experts’ (e.g. advanced welders’) experience. In addition to this, the membership function for fuzzy set is non adaptive, i.e. it remains unchanged as long as they are determined by experience or other means. For welding process, which is time variable systems and strong disturbance exists in it, fixed membership function may not guarantee the required system performance, and attempts should be made to improve the system performance by adopting adaptive membership function. Therefore, the automatically determination of the fuzzy rule and in process adaptation of membership function are required for the advanced welding process control. This paper discussed the possibility by using the combination between FLC and neural network (NN) to realize the above propose. The adaptation of membership function as well as the self organizing of fuzzy rule are realized by the self learning and competitiveness of the NN. Taking GTAW process welds bead width regulating system as the controlled plant, the proposed algorithm was testified for such a process. Computer simulations showed the improvement of the system characteristics.