Heat energy change during the extrusion of 7075 aluminium alloy large-size tube with piece-wing in a container was analyzed. Extrusion load vs ram displacement diagrams and exit temperature vs ram displacement diagram...Heat energy change during the extrusion of 7075 aluminium alloy large-size tube with piece-wing in a container was analyzed. Extrusion load vs ram displacement diagrams and exit temperature vs ram displacement diagrams at various speeds were obtained by 3D FEM simulation. Results show that the exit temperature becomes higher as the ram speed and displacement increase. For large-size tube with piece-wing, there is certainly a curve of ram speed decreasing with increasing ram displacement, which enables isothermal extrusion to be achieved. Therefore,an attempt was made to divide the working stroke into five different zones. Each of them has a preset speed that decreases from the ram displacement beginning to the ending. And then, new exit temperature vs ram displacement diagram was obtained by 3D FEM simulation for the five different speeds. It is shown that the variation of exit temperature is very small. Through the above research, a basic method for realizing isothermal extrusion of 7075 large-size tube with piece-wing was obtained, that is, the working stroke was divided into several different zones with a decreasing speed during extrusion, each zonest speed was real-time adjusted on the feedback signal of exit temperature by proportional hydraulic valve through closed-loop control. The engineering experiment verification was carried out on 100 MN aluminium extrusion press with oil-driven double action. The experimental results of the exit temperature agrees with the simulation ones. The achievements of this study may serve as a significant guide to the practice of the relevant processes, particularly for isothermal extrusion. The verified method has been used in the design and manufacture of 125 MN aluminium extrusion press with oil-driven double action.展开更多
The microstructure and mechanical properties of rapidly solidified Al-Cr alloys were investigated by XRD, TEM and microhardness testing instrument. The results indicate that the matrix of rapidly sohdified Al-Cr alloy...The microstructure and mechanical properties of rapidly solidified Al-Cr alloys were investigated by XRD, TEM and microhardness testing instrument. The results indicate that the matrix of rapidly sohdified Al-Cr alloys is α-Al solid solution when the Cr content is lower than 4 wt%. However, when the Cr content is above 4 wt%, the microstructures of rapidly solidified Al-Cr alloys are different along cross section. The microstructure of alloy contacting copper roller consists of α-Al and a few intermetallic compounds. With the increase of distance from copper roller, the matrix consists of α-Al and spherical intermetallic compounds which conglomerate in α-Al matrix. These intermetallic compounds are Al7Cr, Al11Cr and Al4Cr. The tensile strength has the maximal value when the Cr content is about 8 wt%. The annealed microstructures show that supersaturated α-Al solid solution dissolved with increasing anneal temperature. The starting temperature of the second phase precipitated from the supersaturated α-Al solid solution desponds on the supersaturation. Meanwhile, the microhardness of rapidly solidified Al-Cr alloy reaches maximal value after annealing at 300 ℃.展开更多
基金The authors thank the National Natural Science Foun-dation of China for Distinguished Young Scholars(No.50225518)Doctoral Foundation of Northwestern Poly-technical Uriversity(200209)for the support to this research.
文摘Heat energy change during the extrusion of 7075 aluminium alloy large-size tube with piece-wing in a container was analyzed. Extrusion load vs ram displacement diagrams and exit temperature vs ram displacement diagrams at various speeds were obtained by 3D FEM simulation. Results show that the exit temperature becomes higher as the ram speed and displacement increase. For large-size tube with piece-wing, there is certainly a curve of ram speed decreasing with increasing ram displacement, which enables isothermal extrusion to be achieved. Therefore,an attempt was made to divide the working stroke into five different zones. Each of them has a preset speed that decreases from the ram displacement beginning to the ending. And then, new exit temperature vs ram displacement diagram was obtained by 3D FEM simulation for the five different speeds. It is shown that the variation of exit temperature is very small. Through the above research, a basic method for realizing isothermal extrusion of 7075 large-size tube with piece-wing was obtained, that is, the working stroke was divided into several different zones with a decreasing speed during extrusion, each zonest speed was real-time adjusted on the feedback signal of exit temperature by proportional hydraulic valve through closed-loop control. The engineering experiment verification was carried out on 100 MN aluminium extrusion press with oil-driven double action. The experimental results of the exit temperature agrees with the simulation ones. The achievements of this study may serve as a significant guide to the practice of the relevant processes, particularly for isothermal extrusion. The verified method has been used in the design and manufacture of 125 MN aluminium extrusion press with oil-driven double action.
基金Funded by the Innovation Fund for Outstanding Scholar of Henan Province(No. 0621000700)
文摘The microstructure and mechanical properties of rapidly solidified Al-Cr alloys were investigated by XRD, TEM and microhardness testing instrument. The results indicate that the matrix of rapidly sohdified Al-Cr alloys is α-Al solid solution when the Cr content is lower than 4 wt%. However, when the Cr content is above 4 wt%, the microstructures of rapidly solidified Al-Cr alloys are different along cross section. The microstructure of alloy contacting copper roller consists of α-Al and a few intermetallic compounds. With the increase of distance from copper roller, the matrix consists of α-Al and spherical intermetallic compounds which conglomerate in α-Al matrix. These intermetallic compounds are Al7Cr, Al11Cr and Al4Cr. The tensile strength has the maximal value when the Cr content is about 8 wt%. The annealed microstructures show that supersaturated α-Al solid solution dissolved with increasing anneal temperature. The starting temperature of the second phase precipitated from the supersaturated α-Al solid solution desponds on the supersaturation. Meanwhile, the microhardness of rapidly solidified Al-Cr alloy reaches maximal value after annealing at 300 ℃.