A proteomic analysis of wheat defense response induced by the widely used organophosphorus nematicide fosthiazate is reported. Seed germination and two-dimensional gel electrophoresis (2-DE) experiments were perform...A proteomic analysis of wheat defense response induced by the widely used organophosphorus nematicide fosthiazate is reported. Seed germination and two-dimensional gel electrophoresis (2-DE) experiments were performed using a Chinese wheat cultivar, Zhenmai No. 5. Root and shoot elongation decreased but thiobarbituric acid reactive substances (TBARS) content in embryos increased with increasing pesticide concentration. More than 1000 protein spots were reprodueibly detected in each silver-stained gel. Thirty-seven protein spots with at least 2-fold changes were identified using MALDI-TOF MS/MS analysis. Of these, 24 spots were up-regulated and 13 were down-regulated. Proteins identified included some well-known classical stress responsive proteins under abiotic or biotic stresses as well as some unusual responsive proteins. Ten responsive proteins were reported for the first time at the proteomic level, including fatty acyl CoA reductase, dihydrodipicolinate synthase, DEAD-box ATPase-RNA-helicase, fimbriata-like protein, waxy B 1, rust resistance kinase Lrl0, putative In2.1 protein, retinoblastoma-related protein 1, pollen allergen-like protein and S-adenosyl-L- methionine:phosphoethanolamine N-methyltransferase. The proteins identified were involved in several processes such as metabolism, defense/detoxification, cell structure/ceU growth, signal transduction]transcription, photosynthesis and energy. Seven candidate proteins were further analyzed at the mRNA level by RT-PCR to compare transcript and protein accumulation patterns, revealing that not all the genes were correlated well with the protein level. Identification of these responsive proteins may provide new insight into the molecular basis of the fosthiazate-stress response in the early developmental stages of plants and may be useful in stress monitoring or stress-tolerant crop breeding for environmentally friendly agricultural production.展开更多
Jasmonates (JAs) orchestrate immune responses upon wound/herbivore injury or infection by necrotro- phic pathogens. Elucidation of catabolic routes has revealed new complexity in jasmonate metabolism. Two integrated...Jasmonates (JAs) orchestrate immune responses upon wound/herbivore injury or infection by necrotro- phic pathogens. Elucidation of catabolic routes has revealed new complexity in jasmonate metabolism. Two integrated pathways attenuate signaling by turning over the active hormone jasmonoyl-isoleucine (JA-Ile) through w-oxidation or deconjugation, and define an indirect route forming the derivative 12OH-JA. Here, we provide evidence for a second 12OH-JA formation pathway by direct jasmonic acid (JA) oxidation. Three jasmonic acid oxidases (JAOs) of the 2-oxoglutarate dioxygenase family catalyze spe- cific oxidation of JA to 12OH-JA, and their genes are induced by wounding or infection by the fungus Botrytis cinerea. JA02 exhibits the highest basal expression, and its deficiency in jao2 mutants strongly enhanced antifungal resistance. The resistance phenotype resulted from constitutive expression of antimi- crobial markers rather than from their higher induction in infected jao2 plants and could be reversed by ectopic expression of any of the three JAOs injao2. Elevated defense injao2 was dependent on the activity of JASMONATE RESPONSE 1 (JAR1) and CORONATINE-INSENSITIVE 1 (COI1) but was not correlated with erihanced JA-Ile accumulation. Instead, jao2 mutant lines displayed altered accumulation of several JA species in healthy and challenged plants, suggesting elevated metabolic flux through JA-Ile. Collectively, these data identify the missing enzymes hydroxylating JA and uncover an important metabolic diversion mechanism for repressing basal JA defense responses.展开更多
基金supported by the National Environmental Protection special funds for scientific research on public causes of China(No.2010467016)the Natural Science Foundation of Jiangsu Province(No.BK2009016)+1 种基金the Program of Innovative Engineering of the Chinese Academy of Sciences(No.KZCX2-YW-Q02-06-02, KZCW2-YW-404)Supporting data associated with this article can be found in the online version
文摘A proteomic analysis of wheat defense response induced by the widely used organophosphorus nematicide fosthiazate is reported. Seed germination and two-dimensional gel electrophoresis (2-DE) experiments were performed using a Chinese wheat cultivar, Zhenmai No. 5. Root and shoot elongation decreased but thiobarbituric acid reactive substances (TBARS) content in embryos increased with increasing pesticide concentration. More than 1000 protein spots were reprodueibly detected in each silver-stained gel. Thirty-seven protein spots with at least 2-fold changes were identified using MALDI-TOF MS/MS analysis. Of these, 24 spots were up-regulated and 13 were down-regulated. Proteins identified included some well-known classical stress responsive proteins under abiotic or biotic stresses as well as some unusual responsive proteins. Ten responsive proteins were reported for the first time at the proteomic level, including fatty acyl CoA reductase, dihydrodipicolinate synthase, DEAD-box ATPase-RNA-helicase, fimbriata-like protein, waxy B 1, rust resistance kinase Lrl0, putative In2.1 protein, retinoblastoma-related protein 1, pollen allergen-like protein and S-adenosyl-L- methionine:phosphoethanolamine N-methyltransferase. The proteins identified were involved in several processes such as metabolism, defense/detoxification, cell structure/ceU growth, signal transduction]transcription, photosynthesis and energy. Seven candidate proteins were further analyzed at the mRNA level by RT-PCR to compare transcript and protein accumulation patterns, revealing that not all the genes were correlated well with the protein level. Identification of these responsive proteins may provide new insight into the molecular basis of the fosthiazate-stress response in the early developmental stages of plants and may be useful in stress monitoring or stress-tolerant crop breeding for environmentally friendly agricultural production.
文摘Jasmonates (JAs) orchestrate immune responses upon wound/herbivore injury or infection by necrotro- phic pathogens. Elucidation of catabolic routes has revealed new complexity in jasmonate metabolism. Two integrated pathways attenuate signaling by turning over the active hormone jasmonoyl-isoleucine (JA-Ile) through w-oxidation or deconjugation, and define an indirect route forming the derivative 12OH-JA. Here, we provide evidence for a second 12OH-JA formation pathway by direct jasmonic acid (JA) oxidation. Three jasmonic acid oxidases (JAOs) of the 2-oxoglutarate dioxygenase family catalyze spe- cific oxidation of JA to 12OH-JA, and their genes are induced by wounding or infection by the fungus Botrytis cinerea. JA02 exhibits the highest basal expression, and its deficiency in jao2 mutants strongly enhanced antifungal resistance. The resistance phenotype resulted from constitutive expression of antimi- crobial markers rather than from their higher induction in infected jao2 plants and could be reversed by ectopic expression of any of the three JAOs injao2. Elevated defense injao2 was dependent on the activity of JASMONATE RESPONSE 1 (JAR1) and CORONATINE-INSENSITIVE 1 (COI1) but was not correlated with erihanced JA-Ile accumulation. Instead, jao2 mutant lines displayed altered accumulation of several JA species in healthy and challenged plants, suggesting elevated metabolic flux through JA-Ile. Collectively, these data identify the missing enzymes hydroxylating JA and uncover an important metabolic diversion mechanism for repressing basal JA defense responses.