生产实践和科学研究中,遇到的变量之间的关系,常可分为两大类。一类为确定性的关系,即对变量 x(称为自变量)的每一数值,变量 y(称为因变量)有一完全确定的数值与之对应,这种关系称函数关系。另一类为非确定性的关系,即变量 y 和 x 之间...生产实践和科学研究中,遇到的变量之间的关系,常可分为两大类。一类为确定性的关系,即对变量 x(称为自变量)的每一数值,变量 y(称为因变量)有一完全确定的数值与之对应,这种关系称函数关系。另一类为非确定性的关系,即变量 y 和 x 之间的取值有关系,但这种关系由于种种原因并没有密切到可以唯一确定的程度,这种关系称相关关系。变量间的相关关系,常采用相关分析和回归分析的方法进行研究。而回归分析是更为重要的方法,它已形成为统计学中重要的分支学科之一。回归分析中因变量 y是随机变量,而自变量 x 可以是随机的,也可以是非随机的变量。研究中经常将 x展开更多
Data from vegetation succession study is usually a matrix of plot × species × time.It is difficult to analyse this kind of data at present.A simple technique,clustercentering ordination is described in this ...Data from vegetation succession study is usually a matrix of plot × species × time.It is difficult to analyse this kind of data at present.A simple technique,clustercentering ordination is described in this paper,which can be used to analyse such a matrix directly.The data of 5 permanent plots in 7 years of inlands and grasslands in Kootwijki,the Netherlands,is analysed using this method as an application example.The results obviously illustrate the trend,direction and speedof community succession and can be easily interbrated.This suggests that clustercentering ordination is an effective and time-saving technique in study of vegetation succession.展开更多
文摘生产实践和科学研究中,遇到的变量之间的关系,常可分为两大类。一类为确定性的关系,即对变量 x(称为自变量)的每一数值,变量 y(称为因变量)有一完全确定的数值与之对应,这种关系称函数关系。另一类为非确定性的关系,即变量 y 和 x 之间的取值有关系,但这种关系由于种种原因并没有密切到可以唯一确定的程度,这种关系称相关关系。变量间的相关关系,常采用相关分析和回归分析的方法进行研究。而回归分析是更为重要的方法,它已形成为统计学中重要的分支学科之一。回归分析中因变量 y是随机变量,而自变量 x 可以是随机的,也可以是非随机的变量。研究中经常将 x
文摘Data from vegetation succession study is usually a matrix of plot × species × time.It is difficult to analyse this kind of data at present.A simple technique,clustercentering ordination is described in this paper,which can be used to analyse such a matrix directly.The data of 5 permanent plots in 7 years of inlands and grasslands in Kootwijki,the Netherlands,is analysed using this method as an application example.The results obviously illustrate the trend,direction and speedof community succession and can be easily interbrated.This suggests that clustercentering ordination is an effective and time-saving technique in study of vegetation succession.