BK channels are widely expressed in both excitable and non-excitable cells and known to be involved in many physiological processes,such as vascular smooth tone regulation,neuronal firing and endocrine cell secretion[...BK channels are widely expressed in both excitable and non-excitable cells and known to be involved in many physiological processes,such as vascular smooth tone regulation,neuronal firing and endocrine cell secretion[1].Recently, the BK channels have展开更多
Integrin activation,the transition from a low to a high affinity state,regulates the numerous cellular responses consequent to integrin engagement by extracellular matrix proteins.Kindlin proteins,play crucial roles i...Integrin activation,the transition from a low to a high affinity state,regulates the numerous cellular responses consequent to integrin engagement by extracellular matrix proteins.Kindlin proteins,play crucial roles in the integrin-signaling pathway by directly interacting with and activating integrins,which mediate the cell-extracellular matrix adhesion and signaling.As a widely distributed PTB domain protein and a major member of the kindlin family,kindlin2 interacts withβ3-tail,bridges talin-activated integrins to promote integrin aggregation,and enhances talin-induced integrin activation.Thus,kindlin2 is identified as a coactivator of integrins.Unlike talins,kindlin2 cannot directly alter the conformation of the integrin transmembrane helix and fail to activate integrin alone.Nevertheless,although it is widely accepted that kindlins and talins synergistically promote integrin activation,the underlying mechanism is unclear.Thus,the study of the force dissociation of the kindlin2/β3-tail complex and the conformation stabilization under different mechanical micro-environments should be of great significance for the further understanding of the structural basis of its synergistically activation of integrin.To reveal the molecular dynamics mechanism of interaction between kindlin2 andβ3-tail,we perform molecular dynamics(MD)simulations for this complex with different computing strategies interaction.In MD simulations,the available crystal structures of Kindlin-2/β3-tail complex(Protein Data Bank code 5XQ1)was downloaded from the PDB database.Two software packages,VMD for visualization and modeling and NAMD 2.13 for energy minimizations and MD simulations,were used here.The steadystate conformation of the complex was obtained from the equilibrium simulation.The dissociation event was observed by the constant velocity simulation,and the mechanical stability of the complex was observed by the constant force simulation.Our results showed that,during the equilibrium of the kindlin2-F3/β34ail complex,the residue ME展开更多
基金supported by Natural Science Foundation of China grants10732070,10602031
文摘BK channels are widely expressed in both excitable and non-excitable cells and known to be involved in many physiological processes,such as vascular smooth tone regulation,neuronal firing and endocrine cell secretion[1].Recently, the BK channels have
基金supported by the National Natural Science Foundation of China ( 116272109, 11432006)
文摘Integrin activation,the transition from a low to a high affinity state,regulates the numerous cellular responses consequent to integrin engagement by extracellular matrix proteins.Kindlin proteins,play crucial roles in the integrin-signaling pathway by directly interacting with and activating integrins,which mediate the cell-extracellular matrix adhesion and signaling.As a widely distributed PTB domain protein and a major member of the kindlin family,kindlin2 interacts withβ3-tail,bridges talin-activated integrins to promote integrin aggregation,and enhances talin-induced integrin activation.Thus,kindlin2 is identified as a coactivator of integrins.Unlike talins,kindlin2 cannot directly alter the conformation of the integrin transmembrane helix and fail to activate integrin alone.Nevertheless,although it is widely accepted that kindlins and talins synergistically promote integrin activation,the underlying mechanism is unclear.Thus,the study of the force dissociation of the kindlin2/β3-tail complex and the conformation stabilization under different mechanical micro-environments should be of great significance for the further understanding of the structural basis of its synergistically activation of integrin.To reveal the molecular dynamics mechanism of interaction between kindlin2 andβ3-tail,we perform molecular dynamics(MD)simulations for this complex with different computing strategies interaction.In MD simulations,the available crystal structures of Kindlin-2/β3-tail complex(Protein Data Bank code 5XQ1)was downloaded from the PDB database.Two software packages,VMD for visualization and modeling and NAMD 2.13 for energy minimizations and MD simulations,were used here.The steadystate conformation of the complex was obtained from the equilibrium simulation.The dissociation event was observed by the constant velocity simulation,and the mechanical stability of the complex was observed by the constant force simulation.Our results showed that,during the equilibrium of the kindlin2-F3/β34ail complex,the residue ME