Using a unique adhesive locomotion system,the rock-climbing fish(Beaufortia kweichowensis)adheres to submerged surfaces and crawls both forwards and backwards in torrential streams.To emulate this mechanism,we present...Using a unique adhesive locomotion system,the rock-climbing fish(Beaufortia kweichowensis)adheres to submerged surfaces and crawls both forwards and backwards in torrential streams.To emulate this mechanism,we present a biomimetic robot inspired by the locomotion model of the rock-climbing fish.The prototype contains two anisotropic adhesive components with linkages connected to a linear actuator.Each anisotropic adhesive component consists of one commercial sucker and two retractable bioinspired fin components.The fin components mimic the abduction and adduction of pectoral and pelvic fins through the retractable part to move up and down.The robot prototype was tested on vertical and inverted surfaces,and worked successfully.These results demonstrate that this novel system represents a new locomotion solution for surface movement without detachment from the substrate.展开更多
基金This work is supported by the China Postdoctoral Science Foundation(No.2020M681843)the National Natural Science Foundation of China(Nos.51875507,51821093,and 51890885)+1 种基金the Zhejiang Provincial Natural Science Foundation for Distinguished Young Scholars(No.LR15E050001)the Zhejiang Provincial Natural Science Foundation of China(No.LY18E050003).
文摘Using a unique adhesive locomotion system,the rock-climbing fish(Beaufortia kweichowensis)adheres to submerged surfaces and crawls both forwards and backwards in torrential streams.To emulate this mechanism,we present a biomimetic robot inspired by the locomotion model of the rock-climbing fish.The prototype contains two anisotropic adhesive components with linkages connected to a linear actuator.Each anisotropic adhesive component consists of one commercial sucker and two retractable bioinspired fin components.The fin components mimic the abduction and adduction of pectoral and pelvic fins through the retractable part to move up and down.The robot prototype was tested on vertical and inverted surfaces,and worked successfully.These results demonstrate that this novel system represents a new locomotion solution for surface movement without detachment from the substrate.