该研究对基于注意力机制的长短期记忆(Attention-Based Long Short Term Memory,AT-LSTM)模型对蒸散量(Evapotranspiration,ET)模拟的可行性和有效性进行验证,以提高环境数据缺失情况下的蒸散量模拟精度。基于盐池县2012—2017年的每30 ...该研究对基于注意力机制的长短期记忆(Attention-Based Long Short Term Memory,AT-LSTM)模型对蒸散量(Evapotranspiration,ET)模拟的可行性和有效性进行验证,以提高环境数据缺失情况下的蒸散量模拟精度。基于盐池县2012—2017年的每30 min环境数据,利用不同环境因子组合构建基于注意力机制的LSTM模型,并将其与极限学习机(Extreme Learning Machine,ELM)模型、支持向量机(Support Vector Machine,SVM)模型、长短期记忆(Long Short Term Memory,LSTM)模型在日尺度、月尺度和季节尺度上进行对比分析。结果表明:与其他3种模型相比,当输入环境因子变化时,AT-LSTM模型模拟精度变化很小,模拟效果均较好。当输入空气温度、净辐射、相对湿度、土壤温度、土壤含水率所有环境因子时,基于AT-LSTM模型的模拟效果最好,均方根误差(Root Mean Square Error,RMSE)为0.013 mm/30 min,平均绝对误差(Mean Absolute Error,MAE)为0.006 mm/30 min,相关系数(Correlation Coefficient,R)值为0.905。且无论是从小时尺度、日尺度和月尺度来看,AT-LSTM模型的模拟效果均优于其他3种模型。在环境因子缺失的情况下,净辐射对盐池县ET的模拟贡献程度最大,仅输入净辐射时,AT-LSTM模型模拟得到的RMSE和MAE分别为0.014、0.007 mm/30 min,R为0.892。AT-LSTM模型模拟精度高,模型稳定性强,对蒸散量模拟预测具有一定的适用性,仅输入净辐射的AT-LSTM模型可以作为环境数据缺失条件下的蒸散量预测模型。展开更多
文摘该研究对基于注意力机制的长短期记忆(Attention-Based Long Short Term Memory,AT-LSTM)模型对蒸散量(Evapotranspiration,ET)模拟的可行性和有效性进行验证,以提高环境数据缺失情况下的蒸散量模拟精度。基于盐池县2012—2017年的每30 min环境数据,利用不同环境因子组合构建基于注意力机制的LSTM模型,并将其与极限学习机(Extreme Learning Machine,ELM)模型、支持向量机(Support Vector Machine,SVM)模型、长短期记忆(Long Short Term Memory,LSTM)模型在日尺度、月尺度和季节尺度上进行对比分析。结果表明:与其他3种模型相比,当输入环境因子变化时,AT-LSTM模型模拟精度变化很小,模拟效果均较好。当输入空气温度、净辐射、相对湿度、土壤温度、土壤含水率所有环境因子时,基于AT-LSTM模型的模拟效果最好,均方根误差(Root Mean Square Error,RMSE)为0.013 mm/30 min,平均绝对误差(Mean Absolute Error,MAE)为0.006 mm/30 min,相关系数(Correlation Coefficient,R)值为0.905。且无论是从小时尺度、日尺度和月尺度来看,AT-LSTM模型的模拟效果均优于其他3种模型。在环境因子缺失的情况下,净辐射对盐池县ET的模拟贡献程度最大,仅输入净辐射时,AT-LSTM模型模拟得到的RMSE和MAE分别为0.014、0.007 mm/30 min,R为0.892。AT-LSTM模型模拟精度高,模型稳定性强,对蒸散量模拟预测具有一定的适用性,仅输入净辐射的AT-LSTM模型可以作为环境数据缺失条件下的蒸散量预测模型。