A coupled atmosphere-ocean model developed at the Institute for Space Studies at NASA Goddard Space Flight Center (Russell et al., 1995) was used to verify the validity of Haney-type surface thermal boundary condition...A coupled atmosphere-ocean model developed at the Institute for Space Studies at NASA Goddard Space Flight Center (Russell et al., 1995) was used to verify the validity of Haney-type surface thermal boundary condition, which linearly connects net downward surface heat fluxQ to air/sea temperature difference ΔT by a relaxation coefficientk. The model was initiated from the National Centers for Environmental Prediction (NCEP) atmospheric observations for 1 December 1977, and from the National Ocean Data Center (NODC) global climatological mean December temperature and salinity fields at 1°x 1° resolution. The time step is 7.5 minutes. We integrated the model for 450 days and obtained a complete model-generated global data set of daily mean downward net surface fluxQ, surface air temperatureT A, and sea surface temperatureT O. Then, we calculated the cross-correlation coefficients (CCC) betweenQ and ΔT. The ensemble mean CCC fields show (a) no correlation betweenQ and ΔT in the equatiorial regions, and (b) evident correlation (CCC≥0.7) betweenQ and ΔT in the middle and high latitudes. Additionally, we did the variance analysis and found that whenk=120 W m?2K?1, the two standard deviations, σQ and σκδT , are quite close in the middle and high latitudes. These results agree quite well with a previous research (Chu et al., 1998) on analyzing the NCEP re-analyzed surface data, except that a smaller value ofk (80 W m?2K?1) was found in the previous study. Key words Air-sea coupled system - Ocean surface fluxes - Surface thermal boundary condition展开更多
A variable coefficient, rotation-modified extended Kortweg-deVries (vReKdV) model is applied to the study of the South China Sea (SCS), with focus on the effects of the high-order (cubic) nonlinearity and the ro...A variable coefficient, rotation-modified extended Kortweg-deVries (vReKdV) model is applied to the study of the South China Sea (SCS), with focus on the effects of the high-order (cubic) nonlinearity and the rotation on the disintegration process of large-amplitude (170 m) Internal Solitary Waves (ISWs) and the semi-diurnal internal tide propagating from the deep basin station to the slope and shelf regions in a continuously stratified system. The numerical solutions show that the high-order nonlinearity significantly affects the wave profile by increasing the wave amplitude and the phase speed in the simulated area. It is shown that the initial KdV-type ISW will decay faster when the rotation dispersion is considered, however the wave profile does not change significantly and the rotation effect is not important. The simulations of the semi-diurnal internal tide indicate that the phase of the wave profile is shifted earlier when the rotation effect is included. A solitary wave packet emerges on the shelf, and the wave speed is also greater when considering the rotation dispersion. In addition, the effects of the background currents are discussed further in this paper It is found that the background currents generally change the magnitude and occasionally change the sign of the nonlinear coefficients in the northern SCS.展开更多
文摘A coupled atmosphere-ocean model developed at the Institute for Space Studies at NASA Goddard Space Flight Center (Russell et al., 1995) was used to verify the validity of Haney-type surface thermal boundary condition, which linearly connects net downward surface heat fluxQ to air/sea temperature difference ΔT by a relaxation coefficientk. The model was initiated from the National Centers for Environmental Prediction (NCEP) atmospheric observations for 1 December 1977, and from the National Ocean Data Center (NODC) global climatological mean December temperature and salinity fields at 1°x 1° resolution. The time step is 7.5 minutes. We integrated the model for 450 days and obtained a complete model-generated global data set of daily mean downward net surface fluxQ, surface air temperatureT A, and sea surface temperatureT O. Then, we calculated the cross-correlation coefficients (CCC) betweenQ and ΔT. The ensemble mean CCC fields show (a) no correlation betweenQ and ΔT in the equatiorial regions, and (b) evident correlation (CCC≥0.7) betweenQ and ΔT in the middle and high latitudes. Additionally, we did the variance analysis and found that whenk=120 W m?2K?1, the two standard deviations, σQ and σκδT , are quite close in the middle and high latitudes. These results agree quite well with a previous research (Chu et al., 1998) on analyzing the NCEP re-analyzed surface data, except that a smaller value ofk (80 W m?2K?1) was found in the previous study. Key words Air-sea coupled system - Ocean surface fluxes - Surface thermal boundary condition
基金supported by the National Natural Science Foundation of China(Grant No.41030855)
文摘A variable coefficient, rotation-modified extended Kortweg-deVries (vReKdV) model is applied to the study of the South China Sea (SCS), with focus on the effects of the high-order (cubic) nonlinearity and the rotation on the disintegration process of large-amplitude (170 m) Internal Solitary Waves (ISWs) and the semi-diurnal internal tide propagating from the deep basin station to the slope and shelf regions in a continuously stratified system. The numerical solutions show that the high-order nonlinearity significantly affects the wave profile by increasing the wave amplitude and the phase speed in the simulated area. It is shown that the initial KdV-type ISW will decay faster when the rotation dispersion is considered, however the wave profile does not change significantly and the rotation effect is not important. The simulations of the semi-diurnal internal tide indicate that the phase of the wave profile is shifted earlier when the rotation effect is included. A solitary wave packet emerges on the shelf, and the wave speed is also greater when considering the rotation dispersion. In addition, the effects of the background currents are discussed further in this paper It is found that the background currents generally change the magnitude and occasionally change the sign of the nonlinear coefficients in the northern SCS.