The phenomenon of optical luminescence (OL) is produced in the optical acting to the minerals, it is characteristic of the crystal structure of mineral and depends on the wavelenghths of simulating optical source. Dat...The phenomenon of optical luminescence (OL) is produced in the optical acting to the minerals, it is characteristic of the crystal structure of mineral and depends on the wavelenghths of simulating optical source. Dating with OL is based on the fact that the crystal has a large number of storage electrons, which comes from the action of natural radiation. As a consequence the emission process of photon is a leasing process of the storage electron in the crystal. However, if optical stimulation is continued there comes a time when all storage electrons have been emptied and so the integrated luminescence is proportional to number of storage electrons and hence to age of crystal since it accepted the natural radiation from the environment. There is a review of the principle,methodology and applying techniques of the dating with optical luminescence(DOL).展开更多
Early Yanshanian(Jurassic) granitoids are widespread in the Nanling Range,South China.Whereas large granitic batholiths commonly crop out in the center of the Nanling Range(corresponding geographically to the central ...Early Yanshanian(Jurassic) granitoids are widespread in the Nanling Range,South China.Whereas large granitic batholiths commonly crop out in the center of the Nanling Range(corresponding geographically to the central and northern parts of Guangdong Province),many small stocks occur in the southern part of Jiangxi Province.Most of the small stocks are associated closely with economically significant rare-metal deposits(W,Sn,Nb,Ta).Here we report the results for biotite granites and two-mica granites from three Yanshanian stocks of the Longyuanba complex.LA-ICPMS U-Pb dating of zircon yields an age of 156.1±2.1 Ma for Xiaomubei biotite granite,and U-Pb zircon dating using SIMS yields an age of 156.7±1.2 Ma for Longyuanba-Chengjiang biotite granite and 156.4±1.3 Ma for Jiangtoudong two-mica granite.Biotite granites are silica-rich(SiO 2 =70%-79%),potassic(K 2 O/Na 2 O>1.9),and peraluminous(ASI=1.05-1.33).Associated samples are invariably enriched in Rb,Th,Pb and LREE,yet depleted in Ba,Nb,Sr,P and Ti,and their REE pattern shows a large fractionation between LREE and HREE((La/Yb) N =10.7-13.5) and a pronounced Eu negative anomaly(δEu=0.28-0.41).Two-mica granite samples are also silica-rich(SiO 2 =75%-79%),potassic(K 2 O/Na 2 O>1.2),and peraluminous(ASI=1.09-1.17).However,in contrast to the biotite granites,they are more enriched in Rb,Th,Pb and extremely depleted in Ba,Nb,Sr,P and Ti,and exhibit nearly flat((La/Yb) N =0.75-1.08) chondrite-normalized REE patterns characterized by strong Eu depletion(δEu=0.02-0.04) and clear tetrad effect(TE 1.3 =1.10-1.14).Biotite granites and two-mica granties have comparable Nd isotopic signatures,and their εNd(t) are concentrated in the 13.0 to 9.6 and 11.5 to 7.7 respectively.Their zircon Hf-O isotopes of both also show similarity(biotite granites:εHf(t)= 10.8-7.9,δ 18 O=7.98‰-8.89‰ and εHf(t)= 13.8 to 9.1,δ 18 O=8.31‰-10.08‰;two-mica granites:εHf(t)= 11.3 to 8.0,δ 18 O=7.91‰-9.77‰).The results show that both biotite and two-mica granites were derived mainl展开更多
文摘The phenomenon of optical luminescence (OL) is produced in the optical acting to the minerals, it is characteristic of the crystal structure of mineral and depends on the wavelenghths of simulating optical source. Dating with OL is based on the fact that the crystal has a large number of storage electrons, which comes from the action of natural radiation. As a consequence the emission process of photon is a leasing process of the storage electron in the crystal. However, if optical stimulation is continued there comes a time when all storage electrons have been emptied and so the integrated luminescence is proportional to number of storage electrons and hence to age of crystal since it accepted the natural radiation from the environment. There is a review of the principle,methodology and applying techniques of the dating with optical luminescence(DOL).
基金supported by the Chinese Academy of Sciences(Grant Nos.KZCX1-YW-15-2 and GIGCAS-135Y234151001)the Ministry of Science and Technology(Grant No. 2007CB411403)+1 种基金National Natural Science Foundation of China (Grant Nos.40973025 and 41173039)contribution No.1655 from GIGCAS
文摘Early Yanshanian(Jurassic) granitoids are widespread in the Nanling Range,South China.Whereas large granitic batholiths commonly crop out in the center of the Nanling Range(corresponding geographically to the central and northern parts of Guangdong Province),many small stocks occur in the southern part of Jiangxi Province.Most of the small stocks are associated closely with economically significant rare-metal deposits(W,Sn,Nb,Ta).Here we report the results for biotite granites and two-mica granites from three Yanshanian stocks of the Longyuanba complex.LA-ICPMS U-Pb dating of zircon yields an age of 156.1±2.1 Ma for Xiaomubei biotite granite,and U-Pb zircon dating using SIMS yields an age of 156.7±1.2 Ma for Longyuanba-Chengjiang biotite granite and 156.4±1.3 Ma for Jiangtoudong two-mica granite.Biotite granites are silica-rich(SiO 2 =70%-79%),potassic(K 2 O/Na 2 O>1.9),and peraluminous(ASI=1.05-1.33).Associated samples are invariably enriched in Rb,Th,Pb and LREE,yet depleted in Ba,Nb,Sr,P and Ti,and their REE pattern shows a large fractionation between LREE and HREE((La/Yb) N =10.7-13.5) and a pronounced Eu negative anomaly(δEu=0.28-0.41).Two-mica granite samples are also silica-rich(SiO 2 =75%-79%),potassic(K 2 O/Na 2 O>1.2),and peraluminous(ASI=1.09-1.17).However,in contrast to the biotite granites,they are more enriched in Rb,Th,Pb and extremely depleted in Ba,Nb,Sr,P and Ti,and exhibit nearly flat((La/Yb) N =0.75-1.08) chondrite-normalized REE patterns characterized by strong Eu depletion(δEu=0.02-0.04) and clear tetrad effect(TE 1.3 =1.10-1.14).Biotite granites and two-mica granties have comparable Nd isotopic signatures,and their εNd(t) are concentrated in the 13.0 to 9.6 and 11.5 to 7.7 respectively.Their zircon Hf-O isotopes of both also show similarity(biotite granites:εHf(t)= 10.8-7.9,δ 18 O=7.98‰-8.89‰ and εHf(t)= 13.8 to 9.1,δ 18 O=8.31‰-10.08‰;two-mica granites:εHf(t)= 11.3 to 8.0,δ 18 O=7.91‰-9.77‰).The results show that both biotite and two-mica granites were derived mainl