A detailed record of the Matuyama-Brunhes (M-B) transition has been obtained from the loess unit 8 (L8) at Duanjiapo (34.2° N, 109.2° E), Shannxi Province of China. An investigation of the rock magnetic prop...A detailed record of the Matuyama-Brunhes (M-B) transition has been obtained from the loess unit 8 (L8) at Duanjiapo (34.2° N, 109.2° E), Shannxi Province of China. An investigation of the rock magnetic properties using hysteresis loops, thermomagnetic analyses identifies pseudo-single domain magnetite as the main carrier of the rema-nence, with a small contribution from maghemite and hema-tite. The paleo-direction records obtained reveal: ( i ) The M-B transition was recorded in the middle and lower part of L8, and comprises of five fast reversals. (ii) The duration of the M-B polarity transition related to the directional change is about 4800 a. (iii) The virtual geomagnetic pole (VGP) path during the transition is confined over Africa, peaked 90° away from the sampling site, in contrast with the results obtained from the Weinan loess section. The different VGPs are probably attributed to the pedogenesis.展开更多
The role played by Paleoproterozoic cratons in southern South America from the Mesopro- terozoic to the Early Cambrian is reconsidered here. This period involved protracted continental amal- gamation that led to forma...The role played by Paleoproterozoic cratons in southern South America from the Mesopro- terozoic to the Early Cambrian is reconsidered here. This period involved protracted continental amal- gamation that led to formation of the supercontinent Rodinia, followed by Neoproterozoic continental break-up, with the consequent opening of Clymene and Iapetus oceans, and finally continental re-assembly as Gondwana through complex oblique collisions in the Late Neoproterozoic to Early Cambrian. The evidence for this is based mainly on a combination of precise U-Pb SHRMP dating and radiogenic isotope data for igneous and metamorphic rocks from a large area extending from the Rio de la Plata craton in the east to the Argentine Precordillera in the west and as far north as Arequipa in Peru. Our interpretation of the paleogeographical and geodynamic evolution invokes a hypothetical Paleoproterozoic block (MARA) embracing basement ultimately older than 1.7 Ga in the Western Sierras Pampeanas (Argentina), the Arequipa block (Peru), the Rio Apa block (Brazil), and probably also the Paraguaia block (Bolivia).展开更多
基金This work was supported by the National Natural Science Foundation of China (Grant No. 49425405).
文摘A detailed record of the Matuyama-Brunhes (M-B) transition has been obtained from the loess unit 8 (L8) at Duanjiapo (34.2° N, 109.2° E), Shannxi Province of China. An investigation of the rock magnetic properties using hysteresis loops, thermomagnetic analyses identifies pseudo-single domain magnetite as the main carrier of the rema-nence, with a small contribution from maghemite and hema-tite. The paleo-direction records obtained reveal: ( i ) The M-B transition was recorded in the middle and lower part of L8, and comprises of five fast reversals. (ii) The duration of the M-B polarity transition related to the directional change is about 4800 a. (iii) The virtual geomagnetic pole (VGP) path during the transition is confined over Africa, peaked 90° away from the sampling site, in contrast with the results obtained from the Weinan loess section. The different VGPs are probably attributed to the pedogenesis.
基金Financial support over the last years was through Spanish MEC and MICINN grants CGL2005-02065/BTE and CGL2009-07984UCM-Santander grant GR58/08Argentinian grant 1728 AR PICT 1009
文摘The role played by Paleoproterozoic cratons in southern South America from the Mesopro- terozoic to the Early Cambrian is reconsidered here. This period involved protracted continental amal- gamation that led to formation of the supercontinent Rodinia, followed by Neoproterozoic continental break-up, with the consequent opening of Clymene and Iapetus oceans, and finally continental re-assembly as Gondwana through complex oblique collisions in the Late Neoproterozoic to Early Cambrian. The evidence for this is based mainly on a combination of precise U-Pb SHRMP dating and radiogenic isotope data for igneous and metamorphic rocks from a large area extending from the Rio de la Plata craton in the east to the Argentine Precordillera in the west and as far north as Arequipa in Peru. Our interpretation of the paleogeographical and geodynamic evolution invokes a hypothetical Paleoproterozoic block (MARA) embracing basement ultimately older than 1.7 Ga in the Western Sierras Pampeanas (Argentina), the Arequipa block (Peru), the Rio Apa block (Brazil), and probably also the Paraguaia block (Bolivia).