通过对比分析2013年7月四川盆地西部的两次大暴雨过程,重点分析地形对低层流场的调整作用,结果表明:两次过程都是在副高西侧的低值系统影响下发生的,过程发生前期盆地西部处于高能高湿和及其不稳定的情况下,系统影响时有冷空气配合,&quo...通过对比分析2013年7月四川盆地西部的两次大暴雨过程,重点分析地形对低层流场的调整作用,结果表明:两次过程都是在副高西侧的低值系统影响下发生的,过程发生前期盆地西部处于高能高湿和及其不稳定的情况下,系统影响时有冷空气配合,"7.3"日的冷空气势力强于"7.9"过程,但低层南风弱于"7.9"过程;地形对两次暴雨过程的850 h Pa流场起到调整作用,冷空气影响前东南气流与地形以接近90°的夹角相交,地形的强迫抬升触发对流不稳定能量释放,冷空气入侵后,偏东北气流配合复杂的地形作用,造成龙门山沿线的暴雨;上升速度的大值区域主要位于103.5°E^105.5°E的地形陡峭区域,东南(东北)气流越强上升速度就越大,上升速度的大值区主要位于700 h Pa。展开更多
文摘通过对比分析2013年7月四川盆地西部的两次大暴雨过程,重点分析地形对低层流场的调整作用,结果表明:两次过程都是在副高西侧的低值系统影响下发生的,过程发生前期盆地西部处于高能高湿和及其不稳定的情况下,系统影响时有冷空气配合,"7.3"日的冷空气势力强于"7.9"过程,但低层南风弱于"7.9"过程;地形对两次暴雨过程的850 h Pa流场起到调整作用,冷空气影响前东南气流与地形以接近90°的夹角相交,地形的强迫抬升触发对流不稳定能量释放,冷空气入侵后,偏东北气流配合复杂的地形作用,造成龙门山沿线的暴雨;上升速度的大值区域主要位于103.5°E^105.5°E的地形陡峭区域,东南(东北)气流越强上升速度就越大,上升速度的大值区主要位于700 h Pa。