The global distributions of the rate of precipitation change at seasonal, interannual and interdecadal scales are computed from the observed global data sets. The analysis has revealed that the monsoon regions in Asia...The global distributions of the rate of precipitation change at seasonal, interannual and interdecadal scales are computed from the observed global data sets. The analysis has revealed that the monsoon regions in Asia and West Africa, and to lesser extent Australia, have the highest rate of precipitation change at all time scales in the world. These changes are manifested as seasonal jump, high interannual and interdecadal variability and abrupt changes between climate regimes.展开更多
Glacier shape factors (area, length, and thickness), climatic factors (annual temperature and precipitation), mass balance, and other influence factors, of the Qiyi glacier velocity and their intensity were analyz...Glacier shape factors (area, length, and thickness), climatic factors (annual temperature and precipitation), mass balance, and other influence factors, of the Qiyi glacier velocity and their intensity were analyzed with the application of the path analysis method during 1958-2007. Results indicate that glacier velocity was mainly influenced by glacier shape, followed by mass balance and climatic conditions. Among the influence factors, glacier area and thickness are most significant, and direct and indirect path coef- ficients are respectively 6.56, 4.71, 19.29 and 13.57. This research provides information for further understanding glacier velocity and its influencing factors.展开更多
文摘The global distributions of the rate of precipitation change at seasonal, interannual and interdecadal scales are computed from the observed global data sets. The analysis has revealed that the monsoon regions in Asia and West Africa, and to lesser extent Australia, have the highest rate of precipitation change at all time scales in the world. These changes are manifested as seasonal jump, high interannual and interdecadal variability and abrupt changes between climate regimes.
基金supported by the Global Change Research Program of China (2010CB951404)The National Natura Science Foundation of China (41071043)
文摘Glacier shape factors (area, length, and thickness), climatic factors (annual temperature and precipitation), mass balance, and other influence factors, of the Qiyi glacier velocity and their intensity were analyzed with the application of the path analysis method during 1958-2007. Results indicate that glacier velocity was mainly influenced by glacier shape, followed by mass balance and climatic conditions. Among the influence factors, glacier area and thickness are most significant, and direct and indirect path coef- ficients are respectively 6.56, 4.71, 19.29 and 13.57. This research provides information for further understanding glacier velocity and its influencing factors.