Using data of airborne particle measurement system, weather radar and Ka-band millimeter wave cloud-meter, physical structure characteristics of a typical stable stratiform cloud in Hebei Province on February 27, 2018...Using data of airborne particle measurement system, weather radar and Ka-band millimeter wave cloud-meter, physical structure characteristics of a typical stable stratiform cloud in Hebei Province on February 27, 2018 was analyzed. Research results showed that the detected cloud system was the precipitation stratiform cloud in the later stage of development. The cloud layer developed stably, and the vertical structure was unevenly distributed. The concentration of small cloud particles in high-level clouds was low, and it fluctuated greatly in space, and presented a discontinuous distribution state. The concentration of large cloud particles and precipitation particles was high, which was conducive to the growth of cloud droplets and the aggregation of ice crystals. The concentration of small cloud particles and the content of supercooled water were high in the middle and low-level clouds. The precipitation cloud system had a significant hierarchical structure, which conformed to the "catalysis-supply" mechanism. From the upper layer to the lower layer, the cloud particle spectrum was mainly in the form of single peak or double peak distribution, which showed a monotonic decreasing trend in general. The spectral distribution of small cloud particles in the cloud was discontinuous, and the high-value areas of spectral concentration of large cloud particles and precipitation particles were concentrated in the upper part of the cloud layer, and the particle spectrum was significantly widened. There was inversion zone at the bottom of the cloud layer, which was conducive to the continuous increase of particle concentration and the formation of large supercooled water droplets.展开更多
A substorm event has been simulated for the first time by using SWMF (Space Weather Modeling Framework) developed by the University of Michigan. The model results have been validated using Geotail and Cluster satellit...A substorm event has been simulated for the first time by using SWMF (Space Weather Modeling Framework) developed by the University of Michigan. The model results have been validated using Geotail and Cluster satellite observations. The substorm onset occurs at 22:08 UT on September 28, 2004, as identified from FUV WIC observations on the NASA IMAGE spacecraft. SWMF can couple effectively the magnetosphere, inner magnetosphere and ionosphere processes and is driven by the solar wind and IMF (Interplanetary Magnetic Field) parameters, which are measured by ACE satellite and time delayed to the upstream boundary of the model. It shows that (1) SWMF can predict well the large-scale variations of the magnetospheric magnetic field and ionospheric currents during the substorm event; and (2) the accuracy of the time delay of the solar wind from ACE to the outer boundary of the model has great effects on the model results. Finally, the substorm trigger mechanism has been discussed and the way of improvement of the model has been pointed out.展开更多
基金Supported by National Key R&D Plan Projects (2018YFC1507900)Hebei Province Science and Technology Plan Program(20375402D)。
文摘Using data of airborne particle measurement system, weather radar and Ka-band millimeter wave cloud-meter, physical structure characteristics of a typical stable stratiform cloud in Hebei Province on February 27, 2018 was analyzed. Research results showed that the detected cloud system was the precipitation stratiform cloud in the later stage of development. The cloud layer developed stably, and the vertical structure was unevenly distributed. The concentration of small cloud particles in high-level clouds was low, and it fluctuated greatly in space, and presented a discontinuous distribution state. The concentration of large cloud particles and precipitation particles was high, which was conducive to the growth of cloud droplets and the aggregation of ice crystals. The concentration of small cloud particles and the content of supercooled water were high in the middle and low-level clouds. The precipitation cloud system had a significant hierarchical structure, which conformed to the "catalysis-supply" mechanism. From the upper layer to the lower layer, the cloud particle spectrum was mainly in the form of single peak or double peak distribution, which showed a monotonic decreasing trend in general. The spectral distribution of small cloud particles in the cloud was discontinuous, and the high-value areas of spectral concentration of large cloud particles and precipitation particles were concentrated in the upper part of the cloud layer, and the particle spectrum was significantly widened. There was inversion zone at the bottom of the cloud layer, which was conducive to the continuous increase of particle concentration and the formation of large supercooled water droplets.
基金supported by the National Natural Science Foundation of China (Grant No. 40604017)Open Project Foundation of the State Key Laboratory of Space Weather of Chinese Academy of Sciences
文摘A substorm event has been simulated for the first time by using SWMF (Space Weather Modeling Framework) developed by the University of Michigan. The model results have been validated using Geotail and Cluster satellite observations. The substorm onset occurs at 22:08 UT on September 28, 2004, as identified from FUV WIC observations on the NASA IMAGE spacecraft. SWMF can couple effectively the magnetosphere, inner magnetosphere and ionosphere processes and is driven by the solar wind and IMF (Interplanetary Magnetic Field) parameters, which are measured by ACE satellite and time delayed to the upstream boundary of the model. It shows that (1) SWMF can predict well the large-scale variations of the magnetospheric magnetic field and ionospheric currents during the substorm event; and (2) the accuracy of the time delay of the solar wind from ACE to the outer boundary of the model has great effects on the model results. Finally, the substorm trigger mechanism has been discussed and the way of improvement of the model has been pointed out.