A base-free catalyst system Co(acac)3/BMMImCl was developed for the carbonylation of amines with CO2.45%-81% isolated yields for N,N'-dialkylureas and 6%-23% isolated yields for N,N-diarylureas were obtained.The c...A base-free catalyst system Co(acac)3/BMMImCl was developed for the carbonylation of amines with CO2.45%-81% isolated yields for N,N'-dialkylureas and 6%-23% isolated yields for N,N-diarylureas were obtained.The catalyst system was recovered and reused without significant loss in activity.In this catalyst system,the base catalyst and chemical dehydrant were efficiently avoided.Different reaction conditions were also discussed and a postulated mechanism was proposed.展开更多
CeO2-Co3O4 catalysts for low-temperature CO oxidation were prepared by a co-precipitation method. In combination with the characterization methods of N2 adsorption/desorption, XRD, temperature-programmed reduction (...CeO2-Co3O4 catalysts for low-temperature CO oxidation were prepared by a co-precipitation method. In combination with the characterization methods of N2 adsorption/desorption, XRD, temperature-programmed reduction (TPR), and FT-IR, the influence of the cerium content on the catalytic performance of CeO2-Co3O4 was investigated. The results indicate that the prepared CeO2-Co3O4 catalysts exhibit a better activity than that of pure CeO2 or pure Co3O4. The catalyst with the Ce/Co atomic ratio 1 : 16 exhibits the best activity, which converts 77% of CO at room temperature and completely oxidizes CO at 45 ℃.展开更多
Two kinds of nickel nanoparticles (NPs) well-dispersed in aqueous phase have been conveniently prepared by reducing nickel(II) salt with hydrazine in the presence of amino group (-NH2) functionalized ionic liquids:1-(...Two kinds of nickel nanoparticles (NPs) well-dispersed in aqueous phase have been conveniently prepared by reducing nickel(II) salt with hydrazine in the presence of amino group (-NH2) functionalized ionic liquids:1-(3-aminopropyl)-2,3-dimethylimidazolium bromide ([AMMIM][Br]) and 1-(3-aminopropyl)-2,3-dimethylimidazolium acetate ([AMMIM][AcO]).The Ni(0) particles are composed of smaller ones which assemble in a blackberry-like shape.The Ni nanoparticles stabilized with [AMMIM][AcO] are much larger than those stabilized with [AMMIM][Br],and the former unexpectedly give much higher activity in the selective hydrogenation of citral and nitrobenzene (NB) in aqueous phase.The Ni(0) nanocatalysts dispersed in aqueous phase are stable enough to be reused at least five times without significant loss of catalytic activity and selectivity during the catalytic recycles.展开更多
基金supported by the National Natural Science Foundation of China (20533080)
文摘A base-free catalyst system Co(acac)3/BMMImCl was developed for the carbonylation of amines with CO2.45%-81% isolated yields for N,N'-dialkylureas and 6%-23% isolated yields for N,N-diarylureas were obtained.The catalyst system was recovered and reused without significant loss in activity.In this catalyst system,the base catalyst and chemical dehydrant were efficiently avoided.Different reaction conditions were also discussed and a postulated mechanism was proposed.
文摘CeO2-Co3O4 catalysts for low-temperature CO oxidation were prepared by a co-precipitation method. In combination with the characterization methods of N2 adsorption/desorption, XRD, temperature-programmed reduction (TPR), and FT-IR, the influence of the cerium content on the catalytic performance of CeO2-Co3O4 was investigated. The results indicate that the prepared CeO2-Co3O4 catalysts exhibit a better activity than that of pure CeO2 or pure Co3O4. The catalyst with the Ce/Co atomic ratio 1 : 16 exhibits the best activity, which converts 77% of CO at room temperature and completely oxidizes CO at 45 ℃.
基金supported by the National Natural Science Foundation of China (20773037)East China University of Science and Technology (YJ0142136)the Commission of Science and Technology of Shanghai Municipality (07PJ14023)
文摘Two kinds of nickel nanoparticles (NPs) well-dispersed in aqueous phase have been conveniently prepared by reducing nickel(II) salt with hydrazine in the presence of amino group (-NH2) functionalized ionic liquids:1-(3-aminopropyl)-2,3-dimethylimidazolium bromide ([AMMIM][Br]) and 1-(3-aminopropyl)-2,3-dimethylimidazolium acetate ([AMMIM][AcO]).The Ni(0) particles are composed of smaller ones which assemble in a blackberry-like shape.The Ni nanoparticles stabilized with [AMMIM][AcO] are much larger than those stabilized with [AMMIM][Br],and the former unexpectedly give much higher activity in the selective hydrogenation of citral and nitrobenzene (NB) in aqueous phase.The Ni(0) nanocatalysts dispersed in aqueous phase are stable enough to be reused at least five times without significant loss of catalytic activity and selectivity during the catalytic recycles.