The negative thermal expansion (NTE) properties of the antiperovskite manganese nitrides with micron-scale, submicron-scale and nanometer-scale microstructures, respectively, were investigated using the Mn3Cu0.5Ge0....The negative thermal expansion (NTE) properties of the antiperovskite manganese nitrides with micron-scale, submicron-scale and nanometer-scale microstructures, respectively, were investigated using the Mn3Cu0.5Ge0.5N composition as an example. It was discovered that the NTE start temperature, NTE operation temperature range and coefficient of NTE change obviously in a wide range with decreasing the grain size level of the microstructure. The mechanisms for the broadening of the NTE operation temperature range and the decrease in the absolute value of NTE coefficient were proposed based on the grain-size-dependence of the frustrated magnetic interactions and magnetic ordering. The present study indicates that the NTE properties of the antiperovskite manganese nitrides can be tailored by the control of the microstructure scale.展开更多
A novel manganese(H) coordination polymer [Mn(pdc)]n (pdc = pyridine-2,4- dicarboxylate) has been synthesized under hydrothermal conditions. The crystal is of monoclinic, space group P211n with a = 6.506(4), b...A novel manganese(H) coordination polymer [Mn(pdc)]n (pdc = pyridine-2,4- dicarboxylate) has been synthesized under hydrothermal conditions. The crystal is of monoclinic, space group P211n with a = 6.506(4), b = 9.392(6), c = 11.217(7) A, β = 105.650(12)°, V= 660.0(7)A3, Z = 4, Mr = 220.04, Dc = 2.215 g/cm3,μ = 1.971 mm-1, F(000) = 436, Rint = 0.0345, R = 0.0360 and wR = 0.0778 for 1259 observed reflections with I 〉 2σ(I). In the structure, the Mn(Ⅱ) atom is coordinated in a distorted octahedral arrangement by one pyridine N and five carboxylate O atoms from five pdc ligands, each of which coordinates to five Mn atoms to propagate a three-dimensional layered framework.展开更多
基金supported by the National Natural Science Foundation of China(No.51174009)the Beijing Natural Science Foundation(No.2112006)the Chinese National Programs for Fundamental Research and Development(No.2011CB612207)
文摘The negative thermal expansion (NTE) properties of the antiperovskite manganese nitrides with micron-scale, submicron-scale and nanometer-scale microstructures, respectively, were investigated using the Mn3Cu0.5Ge0.5N composition as an example. It was discovered that the NTE start temperature, NTE operation temperature range and coefficient of NTE change obviously in a wide range with decreasing the grain size level of the microstructure. The mechanisms for the broadening of the NTE operation temperature range and the decrease in the absolute value of NTE coefficient were proposed based on the grain-size-dependence of the frustrated magnetic interactions and magnetic ordering. The present study indicates that the NTE properties of the antiperovskite manganese nitrides can be tailored by the control of the microstructure scale.
基金This project was supported by the NNSFC (No. 20471061)the Science & Technology Innovation Foundation for the Young Scholar of Fujian Province (No. 2005J059)
文摘A novel manganese(H) coordination polymer [Mn(pdc)]n (pdc = pyridine-2,4- dicarboxylate) has been synthesized under hydrothermal conditions. The crystal is of monoclinic, space group P211n with a = 6.506(4), b = 9.392(6), c = 11.217(7) A, β = 105.650(12)°, V= 660.0(7)A3, Z = 4, Mr = 220.04, Dc = 2.215 g/cm3,μ = 1.971 mm-1, F(000) = 436, Rint = 0.0345, R = 0.0360 and wR = 0.0778 for 1259 observed reflections with I 〉 2σ(I). In the structure, the Mn(Ⅱ) atom is coordinated in a distorted octahedral arrangement by one pyridine N and five carboxylate O atoms from five pdc ligands, each of which coordinates to five Mn atoms to propagate a three-dimensional layered framework.