Ni(OH)2 nanoflowers were synthesized by a simple and energy-efficient wet chemistry method. The product was characterized by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). Then Ni(OH)2 ...Ni(OH)2 nanoflowers were synthesized by a simple and energy-efficient wet chemistry method. The product was characterized by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). Then Ni(OH)2 nanoflowers attached multi-walled carbon nanotubes (MWCNTs) modified glassy carbon electrodes (GCE) were proposed (MWCNTs/Ni(OH)2/GCE) to use as electrochemical sensor to detect hydrogen peroxide. The results showed that the synergistic effect was obtained on the MWCNTs/Ni(OH)2/GCE whose sensitivity was better than that of Ni(OH)2/GCE. The linear range is from 0.2 to 22 mmol/L, the detection limit is 0.066 mmol/L, and the re- sponse time is 〈5 s. Satisfyingly, the MWCNTs/Ni(OH)2/GCE was not only successfully employed to eliminate the interferences from uric acid (UA), acid ascorbic (AA), dopamine (DA), glucose (GO) but also NO2 during the detection. The MWCNTs/Ni(OH)z/GCE allows highly sensitive, excellently selective and fast amperometric sensing of hydrogen peroxide and thus is promising for the future development of hydrogen peroxide sensors.展开更多
In this paper the relation is derived between quasi-parabolic regulation and the rule of increasing oxygenpotential. Using these rules in Co-O binary system the stability of compounds CoO and Co_3O_4 is examined.
文摘Ni(OH)2 nanoflowers were synthesized by a simple and energy-efficient wet chemistry method. The product was characterized by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). Then Ni(OH)2 nanoflowers attached multi-walled carbon nanotubes (MWCNTs) modified glassy carbon electrodes (GCE) were proposed (MWCNTs/Ni(OH)2/GCE) to use as electrochemical sensor to detect hydrogen peroxide. The results showed that the synergistic effect was obtained on the MWCNTs/Ni(OH)2/GCE whose sensitivity was better than that of Ni(OH)2/GCE. The linear range is from 0.2 to 22 mmol/L, the detection limit is 0.066 mmol/L, and the re- sponse time is 〈5 s. Satisfyingly, the MWCNTs/Ni(OH)2/GCE was not only successfully employed to eliminate the interferences from uric acid (UA), acid ascorbic (AA), dopamine (DA), glucose (GO) but also NO2 during the detection. The MWCNTs/Ni(OH)z/GCE allows highly sensitive, excellently selective and fast amperometric sensing of hydrogen peroxide and thus is promising for the future development of hydrogen peroxide sensors.
文摘In this paper the relation is derived between quasi-parabolic regulation and the rule of increasing oxygenpotential. Using these rules in Co-O binary system the stability of compounds CoO and Co_3O_4 is examined.