报道了一种基于双向拉曼放大的布里渊光时域分析系统(Brillouin optical time domain analyzer,BOTDA).利用双向拉曼抽运对信号光进行拉曼放大以补偿光纤损耗及布里渊抽运波的消耗,从而使光纤后端的测量分辨率得到改善,测量分辨率在整...报道了一种基于双向拉曼放大的布里渊光时域分析系统(Brillouin optical time domain analyzer,BOTDA).利用双向拉曼抽运对信号光进行拉曼放大以补偿光纤损耗及布里渊抽运波的消耗,从而使光纤后端的测量分辨率得到改善,测量分辨率在整段传感光纤趋于一致,同时避免了调制不稳定性引起的频谱扩展,克服了传统BOTDA存在的信号强度指数下降的弊端,使传感精度得到进一步提高.实验实现了50km传感距离,温度分辨率达0.6℃,空间分辨率为50m.实验测量并分析了基于双向拉曼放大的BOTDA信噪比和光功率分布特性.展开更多
Strong multi-order forward stimulated Brillouin scattering (SBS) has been observed in the backward pumped S-band distributed fiber Raman amplifier (PRA) with tunable narrow signal source (less than 100 MHz) when the p...Strong multi-order forward stimulated Brillouin scattering (SBS) has been observed in the backward pumped S-band distributed fiber Raman amplifier (PRA) with tunable narrow signal source (less than 100 MHz) when the pump power of FRA reached the SBS threshold. This does not obey the theory that only weak backward SBS lines exist according to the conservation of energy and momentum and the wave vector selected rule. This is because the sound waveguide characteristic weakens the wave vector rule, and the forward transmitted sound waveguide Brillouin scattering lines are generated and amplified in FRA. When the pump power is further increased, 11 orders of SBS lines and comb-like profile are observed. For the excited line, the frequency is 197.2296 THz and the power is 0 dBm. The even order SBS lines are stronger than odd order SBS lines, the power of the 2nd and 4th order SBS lines is 1.75 dBm, which is 16 dB higher than that of the 1st and 3rd order SBS lines. The odd order SBS lines are named Brillouin Rayleigh scattering lines.展开更多
文摘报道了一种基于双向拉曼放大的布里渊光时域分析系统(Brillouin optical time domain analyzer,BOTDA).利用双向拉曼抽运对信号光进行拉曼放大以补偿光纤损耗及布里渊抽运波的消耗,从而使光纤后端的测量分辨率得到改善,测量分辨率在整段传感光纤趋于一致,同时避免了调制不稳定性引起的频谱扩展,克服了传统BOTDA存在的信号强度指数下降的弊端,使传感精度得到进一步提高.实验实现了50km传感距离,温度分辨率达0.6℃,空间分辨率为50m.实验测量并分析了基于双向拉曼放大的BOTDA信噪比和光功率分布特性.
文摘Strong multi-order forward stimulated Brillouin scattering (SBS) has been observed in the backward pumped S-band distributed fiber Raman amplifier (PRA) with tunable narrow signal source (less than 100 MHz) when the pump power of FRA reached the SBS threshold. This does not obey the theory that only weak backward SBS lines exist according to the conservation of energy and momentum and the wave vector selected rule. This is because the sound waveguide characteristic weakens the wave vector rule, and the forward transmitted sound waveguide Brillouin scattering lines are generated and amplified in FRA. When the pump power is further increased, 11 orders of SBS lines and comb-like profile are observed. For the excited line, the frequency is 197.2296 THz and the power is 0 dBm. The even order SBS lines are stronger than odd order SBS lines, the power of the 2nd and 4th order SBS lines is 1.75 dBm, which is 16 dB higher than that of the 1st and 3rd order SBS lines. The odd order SBS lines are named Brillouin Rayleigh scattering lines.