Based on the Kirchhoff approximation for rough surface scattering and by calculating the shadowing function of the rough surface, the formula of the scattering cross section of the dielectric rough surface is presente...Based on the Kirchhoff approximation for rough surface scattering and by calculating the shadowing function of the rough surface, the formula of the scattering cross section of the dielectric rough surface is presented with consideration of the shadowing effect for the optical wave incidence. It is obtained that in comparison with the conventional Kirchhoff solution, the shadowing effect should not be neglected for the optical wave scattering from the rough surface. The influence of the shadowing effect for different incidence angle, surface root mean square slope, and surface roughness on the scattering cross section is discussed in detail.展开更多
We study the dynamics of two entangled atoms interacting with a common structured reservoir. By means of the exact solution of atomic dynamics, we show a novel quantum interference controlled by the relative phase of ...We study the dynamics of two entangled atoms interacting with a common structured reservoir. By means of the exact solution of atomic dynamics, we show a novel quantum interference controlled by the relative phase of initial entangled state of the atoms. The quantum interference has a great influence on trapped excited-state population and stationary entanglement of the atoms. In particular, we construct an explicit condition under which atomic stationary entanglement can grow over their initial value.展开更多
The rotational properties of Bose-Einstein condensates in a synthetic magnetic field are studied by numerically solving the Gross-Pitaevskii equation and comparing the results to those of condensates confined in a rot...The rotational properties of Bose-Einstein condensates in a synthetic magnetic field are studied by numerically solving the Gross-Pitaevskii equation and comparing the results to those of condensates confined in a rotating trap. It appears to be more difficult to add a large angular momentum to condensates spun up by the synthetic magnetic field than by the rotating trap. However, strength- ening the repulsive interaction between atoms is an effective and realizable route to overcoming this problem and can at least generate vortex-lattice-like structures. In addition, the validity of the Feynman rule for condensates in the synthetic magnetic field is verified.展开更多
revised manuscript received 30 April 2012) We investigate the influence of environmental decoherence on the dynamics of a coupled qubit system and quantum correlation. We analyse the relationship between concurrence...revised manuscript received 30 April 2012) We investigate the influence of environmental decoherence on the dynamics of a coupled qubit system and quantum correlation. We analyse the relationship between concurrence and the degree of initial entanglement or the purity of initial quantum state, and also their relationship with quantum discord. The results show that the decrease of the purity of an initial quantum state can induce the attenuation of concurrence or quantum discord, but the attenuation of quantum discord is obviously slower than the concurrence's, correspondingly the survival time of quantum discord is longer. Further investigation reveals that the robustness of quantum discord and concurrence relies on the entanglement degree of the initial quantum state. The higher the degree of entanglement, the more robust the quantum discord is than concurrence. And the reverse is equally true. Birth and death happen to quantum discord periodically and a newborn quantum discord comes into being under a certain condition, so does the concurrence.展开更多
基金This work was supported by the National Natural Science Foundation of China No. 60101001 and by the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of Ministry of Education,
文摘Based on the Kirchhoff approximation for rough surface scattering and by calculating the shadowing function of the rough surface, the formula of the scattering cross section of the dielectric rough surface is presented with consideration of the shadowing effect for the optical wave incidence. It is obtained that in comparison with the conventional Kirchhoff solution, the shadowing effect should not be neglected for the optical wave scattering from the rough surface. The influence of the shadowing effect for different incidence angle, surface root mean square slope, and surface roughness on the scattering cross section is discussed in detail.
基金supported by the National Natural Science Foundation of China (11204156, 10947006 and 61178012)the Specialized Research Fund for the Doctoral Program of Higher Education (20093705110001)the Scientific Research Foundation of Qufu Normal University for Doctors (BDQD20100203)
文摘We study the dynamics of two entangled atoms interacting with a common structured reservoir. By means of the exact solution of atomic dynamics, we show a novel quantum interference controlled by the relative phase of initial entangled state of the atoms. The quantum interference has a great influence on trapped excited-state population and stationary entanglement of the atoms. In particular, we construct an explicit condition under which atomic stationary entanglement can grow over their initial value.
基金s The authors are grateful to Weizbu Bao for valuable assistance in the numerical and programming techniques. This work was supported by the National Key Basic Research Pro- grain of China (Grant No. 2013CB922002), the National Natural Science Foundation of China (Grant No. 11074021), and the Fun- damental Research Funds for the Central Universities of China.
文摘The rotational properties of Bose-Einstein condensates in a synthetic magnetic field are studied by numerically solving the Gross-Pitaevskii equation and comparing the results to those of condensates confined in a rotating trap. It appears to be more difficult to add a large angular momentum to condensates spun up by the synthetic magnetic field than by the rotating trap. However, strength- ening the repulsive interaction between atoms is an effective and realizable route to overcoming this problem and can at least generate vortex-lattice-like structures. In addition, the validity of the Feynman rule for condensates in the synthetic magnetic field is verified.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11164009)
文摘revised manuscript received 30 April 2012) We investigate the influence of environmental decoherence on the dynamics of a coupled qubit system and quantum correlation. We analyse the relationship between concurrence and the degree of initial entanglement or the purity of initial quantum state, and also their relationship with quantum discord. The results show that the decrease of the purity of an initial quantum state can induce the attenuation of concurrence or quantum discord, but the attenuation of quantum discord is obviously slower than the concurrence's, correspondingly the survival time of quantum discord is longer. Further investigation reveals that the robustness of quantum discord and concurrence relies on the entanglement degree of the initial quantum state. The higher the degree of entanglement, the more robust the quantum discord is than concurrence. And the reverse is equally true. Birth and death happen to quantum discord periodically and a newborn quantum discord comes into being under a certain condition, so does the concurrence.