刨花板作为一种人造板材,其表面多孔性致使应变片的粘贴过程十分困难,且涂胶量的多少会直接影响测量的精度。基于对样品变形前后图像分析的数字图像相关(Digital Image Correlation,DIC)技术被用于测量刨花板的力学参数。相比于传统的...刨花板作为一种人造板材,其表面多孔性致使应变片的粘贴过程十分困难,且涂胶量的多少会直接影响测量的精度。基于对样品变形前后图像分析的数字图像相关(Digital Image Correlation,DIC)技术被用于测量刨花板的力学参数。相比于传统的贴应变片法,该技术具有高精度、非接触性及全场测量等优势。"横观各向同性"模型被考虑用来模拟刨花板的力学行为。于是,表征材料力学性能的弹性张量取决于5个独立的弹性参数:纵向、横向弹性模量EL、ET,纵向、横向泊松比νL、νT及纵向剪切模量GL。为了实现这一测量过程,刨花板被切割成一批梁样品,随后被应用于三点弯曲试验。通过比较感兴趣区域(Region Of Interest,ROI)内网格节点位移的测量值与铁木辛柯梁理论解析解,及有限元模型修正(Finite Element Model Updating,FEMU)方法的应用,4个弹性参数ET、GL、EL和νL被成功测量。对比相关文献,该文的测量方法简单易行,测量结果准确,可应用于刨花板材料并推广至各向异性材料的弹性参数测量之中。展开更多
Ultra-high-temperature materials have applications in aerospace and nuclear industry.They are usually subjected to complex thermal environments during service.The mechanical properties of materials in ultra-high-tempe...Ultra-high-temperature materials have applications in aerospace and nuclear industry.They are usually subjected to complex thermal environments during service.The mechanical properties of materials in ultra-high-temperature environments have been attracted increasing attentions.However,the characterization and evaluation of ultra-high-temperature mechanical properties of materials are still challenging work.This article presents a review on the mechanical properties of materials at elevated temperatures.The experimental results and techniques on the ultra-high-temperature mechanical properties of materials are reviewed.The constitutive models of materials at elevated temperatures are discussed.The recent research progress on the quantitative theoretical characterization models for the temperature-dependent fracture strength of advanced ceramics and their composites is also given,and the emphasis is placed on the applications of the force-heat equivalence energy density principle.The thermal–mechanical-oxygen coupled computational mechanics of materials are discussed.Furthermore,the outlook and concluding remarks are highlighted.展开更多
An abnormally high peak friction angle of Ottawa sand was observed in(National Aeronautics and Space Administration) NASA–(Mechanics of Granular Materials) MGM tests in microgravity conditions on the space shuttle. P...An abnormally high peak friction angle of Ottawa sand was observed in(National Aeronautics and Space Administration) NASA–(Mechanics of Granular Materials) MGM tests in microgravity conditions on the space shuttle. Previous investigations have been unsuccessful in providing a constitutive insight into this behavior of granular materials under extremely low effective stress conditions. Here, a recently proposed unified constitutive model for transient rheological behavior of sand and other granular materials is adopted for the analytical assessment of high peak friction angles. For the first time, this long-eluded behavior of sand is attributed to a hidden rheological transition mechanism, that is not only rate-sensitive, but also pressure-sensitive. The NASA–MGM microgravity conditions show that shear-tests of sand can be performed under abnormally low confining stress conditions. The pressure-sensitive behavior of granular shearing that is previously ignored is studied based on the μ(I) rheology and its variations. Comparisons between the model and the NASA microgravity tests demonstrate a high degree of agreement. The research is highly valid for pressure-sensitive and rate-dependent problems that occur during earthquakes, landslides, and space exploration.展开更多
文摘刨花板作为一种人造板材,其表面多孔性致使应变片的粘贴过程十分困难,且涂胶量的多少会直接影响测量的精度。基于对样品变形前后图像分析的数字图像相关(Digital Image Correlation,DIC)技术被用于测量刨花板的力学参数。相比于传统的贴应变片法,该技术具有高精度、非接触性及全场测量等优势。"横观各向同性"模型被考虑用来模拟刨花板的力学行为。于是,表征材料力学性能的弹性张量取决于5个独立的弹性参数:纵向、横向弹性模量EL、ET,纵向、横向泊松比νL、νT及纵向剪切模量GL。为了实现这一测量过程,刨花板被切割成一批梁样品,随后被应用于三点弯曲试验。通过比较感兴趣区域(Region Of Interest,ROI)内网格节点位移的测量值与铁木辛柯梁理论解析解,及有限元模型修正(Finite Element Model Updating,FEMU)方法的应用,4个弹性参数ET、GL、EL和νL被成功测量。对比相关文献,该文的测量方法简单易行,测量结果准确,可应用于刨花板材料并推广至各向异性材料的弹性参数测量之中。
文摘Ultra-high-temperature materials have applications in aerospace and nuclear industry.They are usually subjected to complex thermal environments during service.The mechanical properties of materials in ultra-high-temperature environments have been attracted increasing attentions.However,the characterization and evaluation of ultra-high-temperature mechanical properties of materials are still challenging work.This article presents a review on the mechanical properties of materials at elevated temperatures.The experimental results and techniques on the ultra-high-temperature mechanical properties of materials are reviewed.The constitutive models of materials at elevated temperatures are discussed.The recent research progress on the quantitative theoretical characterization models for the temperature-dependent fracture strength of advanced ceramics and their composites is also given,and the emphasis is placed on the applications of the force-heat equivalence energy density principle.The thermal–mechanical-oxygen coupled computational mechanics of materials are discussed.Furthermore,the outlook and concluding remarks are highlighted.
基金Project supported by the ESA-CMSA/CSU Space Science and Utilization Collaboration Program。
文摘An abnormally high peak friction angle of Ottawa sand was observed in(National Aeronautics and Space Administration) NASA–(Mechanics of Granular Materials) MGM tests in microgravity conditions on the space shuttle. Previous investigations have been unsuccessful in providing a constitutive insight into this behavior of granular materials under extremely low effective stress conditions. Here, a recently proposed unified constitutive model for transient rheological behavior of sand and other granular materials is adopted for the analytical assessment of high peak friction angles. For the first time, this long-eluded behavior of sand is attributed to a hidden rheological transition mechanism, that is not only rate-sensitive, but also pressure-sensitive. The NASA–MGM microgravity conditions show that shear-tests of sand can be performed under abnormally low confining stress conditions. The pressure-sensitive behavior of granular shearing that is previously ignored is studied based on the μ(I) rheology and its variations. Comparisons between the model and the NASA microgravity tests demonstrate a high degree of agreement. The research is highly valid for pressure-sensitive and rate-dependent problems that occur during earthquakes, landslides, and space exploration.