In this paper we consider averaging and finite difference methods for solving the 3-D boundary-value problem in a multilayered domain. We consider the metal concentration in the 3 layered peat blocks. Using experiment...In this paper we consider averaging and finite difference methods for solving the 3-D boundary-value problem in a multilayered domain. We consider the metal concentration in the 3 layered peat blocks. Using experimental data the mathematical model for calculating the concentration of metal at different points in peat layers is developed. A specific feature of these problems is that it is necessary to solve the 3-D boundary-value problems for the partial differential equations (PDEs) of the elliptic type of second order with piece-wise diffusion coefficients in the three layer domain. We develop here a finite-difference method for solving a problem of the above type with the periodical boundary condition in x direction. This procedure allows reducing the 3-D problem to a system of 2-D problems by using a circulant matrix.展开更多
Collocation method is put forward to solve the semiconductor problem with heat-conduction, whose mathematical model is described by an initial and boundary problem for a nonlinear partial differential equation system....Collocation method is put forward to solve the semiconductor problem with heat-conduction, whose mathematical model is described by an initial and boundary problem for a nonlinear partial differential equation system. One elliptic equation is for the electric potential, and three parabolic equations are for the electron concentration, hole concentration and heat-conduction. Using the prior estimate and technique of differential equations, we obtained almost optimal error estimates in L2.展开更多
文摘In this paper we consider averaging and finite difference methods for solving the 3-D boundary-value problem in a multilayered domain. We consider the metal concentration in the 3 layered peat blocks. Using experimental data the mathematical model for calculating the concentration of metal at different points in peat layers is developed. A specific feature of these problems is that it is necessary to solve the 3-D boundary-value problems for the partial differential equations (PDEs) of the elliptic type of second order with piece-wise diffusion coefficients in the three layer domain. We develop here a finite-difference method for solving a problem of the above type with the periodical boundary condition in x direction. This procedure allows reducing the 3-D problem to a system of 2-D problems by using a circulant matrix.
基金The NNSF.MTYF(10126029)of China and the YF of Shandong University.
文摘Collocation method is put forward to solve the semiconductor problem with heat-conduction, whose mathematical model is described by an initial and boundary problem for a nonlinear partial differential equation system. One elliptic equation is for the electric potential, and three parabolic equations are for the electron concentration, hole concentration and heat-conduction. Using the prior estimate and technique of differential equations, we obtained almost optimal error estimates in L2.
基金supported by Anhui Provincial Nature Science Foundation(1208085MA13)the Research Fund for the Doctoral Program of Higher Education(20103401120002,20113401120001)+1 种基金211 Project of Anhui University(02303129,KJTD002B,02303303-33030011,02303902-39020011)the Key Foundation of Anhui Education Bureau(KJ2012A019)