In this paper,we study the solution to the endolymph equation using the fractional derivative of arbitrary orderλ(0<λ<1).The exact analytic solution is given by using Laplace transform in terms of Mittag-Leffl...In this paper,we study the solution to the endolymph equation using the fractional derivative of arbitrary orderλ(0<λ<1).The exact analytic solution is given by using Laplace transform in terms of Mittag-Leffler functions.We then evaluate the approximate numerical solution using MATLAB.展开更多
In this article, the authors deal with the Cauchy problem of a nonlinear parabolic equation with variable density and absorption. By using energy methods, the authors prove that the interfaces can disappear in finite ...In this article, the authors deal with the Cauchy problem of a nonlinear parabolic equation with variable density and absorption. By using energy methods, the authors prove that the interfaces can disappear in finite time under some assumptions on the density functions.展开更多
基金Supported by the National Natural Science Foundation of China (10461005)the Scientific Research Foundation of Tianjin Education Committee (200504042006ZH91).
文摘In this paper,we study the solution to the endolymph equation using the fractional derivative of arbitrary orderλ(0<λ<1).The exact analytic solution is given by using Laplace transform in terms of Mittag-Leffler functions.We then evaluate the approximate numerical solution using MATLAB.
基金This work is supported in part by NNSF of China(10571126)in part by Program for New Century Excellent Talents in University
文摘In this article, the authors deal with the Cauchy problem of a nonlinear parabolic equation with variable density and absorption. By using energy methods, the authors prove that the interfaces can disappear in finite time under some assumptions on the density functions.