At present,the grape and cherry industries in Shandong are in the leading position in China and have driven the development of related high-end manufacturing industries such as wine,brandy,preserved fruit processing,f...At present,the grape and cherry industries in Shandong are in the leading position in China and have driven the development of related high-end manufacturing industries such as wine,brandy,preserved fruit processing,fruit juice processing and health products. Therefore,vigorously developing the grape and cherry industries in Shandong Province and carrying out development and innovation are important parts of Shandong Province in responding to the strategy of national new and old kinetic energy conversion. However,currently the germplasm resources preserved in the fruit tree resources banks in China are only 45% of those in the US and 27. 2% of those in the EU. Moreover,the development of fruit trees resources banks in Shandong is relatively backward in China,and there is still no banks related with grape and cherry germplasm resources in Shandong. Therefore,importance can be attached to the agriculture,forestry,and animal husbandry to build germplasm resources banks for grape and cherry industries in Shandong Province. Building the national-level grape and cherry germplasm resources bank in Shandong Province can also promote the utilization of wild and farm germplasm resources in the future; advance the research on the genes related to disease resistance,stress resistance and quality of grapes and cherries; push forward the construction and development of cherry and grape mutants banks. It is conducive to the research on the agronomic traits of grapes and cherries,and can provide the parents resources for planting innovation and improving the quality of grapes and cherries,as well as promote the development and application of molecular markers of grapes and cherries,including the identification of lines and crossbreeding. Thereby,it cannot only promote the industry development,but also achieve the development of cultivation,breeding and basic research in an all-round way and the development of " production,study and research" going side by side.展开更多
Establishing alternative methods for freshwater production is imperative to effectively alleviate global water scarcity,particularly in land-locked arid regions.In this context,extracting water from the ubiquitous atm...Establishing alternative methods for freshwater production is imperative to effectively alleviate global water scarcity,particularly in land-locked arid regions.In this context,extracting water from the ubiquitous atmospheric moisture is an ingenious strategy for decentralized freshwater production.Sorption-based atmospheric water harvesting(SAWH)shows strong potential for supplying liquid water in a portable and sustainable way even in desert environments.Herein,the latest progress in SAWH technology in terms of materials,devices,and systems is reviewed.Recent advances in sorbent materials with improved water uptake capacity and accelerated sorption–desorption kinetics,including physical sorbents,polymeric hydrogels,composite sorbents,and ionic solutions,are discussed.The thermal designs of SAWH devices for improving energy utilization efficiency,heat transfer,and mass transport are evaluated,and the development of representative SAWH prototypes is clarified in a chronological order.Thereafter,state-of-the-art operation patterns of SAWH systems,incorporating intermittent,daytime continuous and 24-hour continuous patterns,are examined.Furthermore,current challenges and future research goals of this cutting-edge field are outlined.This review highlights the irreplaceable role of heat and mass transfer enhancement and facile structural improvement for constructing high-yield water harvesters.展开更多
Detecting tiny deformations or vibrations, particularly those associated with strains below 1%, is essential in various technological applications. Traditional intrinsic materials, including metals and semiconductors,...Detecting tiny deformations or vibrations, particularly those associated with strains below 1%, is essential in various technological applications. Traditional intrinsic materials, including metals and semiconductors, face challenges in simultaneously achieving initial metallic state and strain-induced insulating state, hindering the development of highly sensitive mechanical sensors. Here we report an ultrasensitive mechanical sensor based on a strain-induced tunable ordered array of metallic and insulating states in the single-crystal bronze-phase vanadium dioxide [VO_(2)(B)] quantum material. It is shown that the initial metallic state in the VO_(2)(B) flake can be tuned to the insulating state by applying a weak uniaxial tensile strain. Such a unique property gives rise to a record-high gauge factor of above 607970, surpassing previous values by an order of magnitude, with excellent linearity and mechanical resilience as well as durability. As a proof-of-concept application, we use our proposed mechanical sensor to demonstrate precise sensing of the micro piece, gentle airflows and water droplets. We attribute the superior performance of the sensor to the strain-induced continuous metal-insulator transition in the single-crystal VO_(2)(B) flake, evidenced by experimental and simulation results. Our findings highlight the potential of exploiting correlated quantum materials for next-generation ultrasensitive flexible mechanical sensors, addressing critical limitations in traditional materials.展开更多
Silicon waveguides typically exhibit optical anisotropy,which leads to polarization correlation and single-polarization operations.This consequently creates a demand for polarization-control devices.This paper introdu...Silicon waveguides typically exhibit optical anisotropy,which leads to polarization correlation and single-polarization operations.This consequently creates a demand for polarization-control devices.This paper introduces a CMOS-compatible O-band reconfigurable TE/TM polarization rotator comprising two symmetrical polarization rotator-splitters and phase shifters.This configuration enables dynamic conversion of any linear polarization to its quadratic equivalent.Experimental results indicate that the reconfigurable polarization rotator exhibits an insertion loss of less than 1.5 dB.Furthermore,the bandwidth for a polarization extinction ratio beyond 15 dB exceeds 60 nm.展开更多
We present a magnetic scanning microscope equipped with a nitrogen-vacancy(NV) center scanning probe that has the ability to mechanically tune the strain of soft matter in-situ. The construction of the microscope and ...We present a magnetic scanning microscope equipped with a nitrogen-vacancy(NV) center scanning probe that has the ability to mechanically tune the strain of soft matter in-situ. The construction of the microscope and a continuous straintuning sample holder are discussed. An optically detected magnetic resonance protocol utilized in the imaging is described.In order to show the reliability of this microscope, the strain conduction is estimated with finite element simulation, and xray diffraction is required for calibration when freestanding crystal films are under consideration. A magnetic imaging result is displayed to demonstrate the nano-scale imaging capability. The microscope presented in this work is helpful in studying strain-coupled magnetic physics such as magnetic phase transition under strain and strain-tuned cycloidal orientation tilting.展开更多
Reservoir computing has been considered as a promising intelligent computing paradigm for effectively processing complex temporal information.Exploiting tunable and reproducible dynamics in the single electronic devic...Reservoir computing has been considered as a promising intelligent computing paradigm for effectively processing complex temporal information.Exploiting tunable and reproducible dynamics in the single electronic device have been desired to implement the “reservoir” and the “readout” layer of reservoir computing system.Two-dimensional moiré materials,with an artificial lattice constant many times larger than the atomic length scale,are one type of most studied artificial quantum materials in community of material science and condensed-matter physics over the past years.These materials are featured with gate-tunable periodic potential and electronic correlation,thus varying the electric field allows the electrons in the moiré potential per unit cell to exhibit distinct and reproducible dynamics,showing great promise in robust reservoir computing.Here,we report that a moiré synaptic transistor can be used to implement the reservoir computing system with a homogeneous reservoir-readout architecture.The synaptic transistor is fabricated based on an h-BN/bilayer graphene/h-BN moiré heterostructure,exhibiting ferroelectricity-like hysteretic gate voltage dependence of resistance.Varying the magnitude of the gate voltage enables the moiré transistor to switch between long-term memory and shortterm memory with nonlinear dynamics.By employing the short-and long-term memories as the reservoir nodes and weights of the readout layer,respectively,we construct a full-moiré physical neural network and demonstrate that the classification accuracy of 90.8% can be achieved for the MNIST(Modified National Institute of Standards and Technology) handwritten digits database.Our work would pave the way towards the development of neuromorphic computing based on moiré materials.展开更多
We propose and experimentally demonstrate a high quality(Q)-factor all-silicon bound state in the continuum(BIC)metasurface with an imperforated air-hole array.The metasurface supports two polarization-insensitive BIC...We propose and experimentally demonstrate a high quality(Q)-factor all-silicon bound state in the continuum(BIC)metasurface with an imperforated air-hole array.The metasurface supports two polarization-insensitive BICs originated from guided mode resonances(GMRs)in the frequency range of 0.4 to 0.6 THz,and the measured Q-factors of the two GMRs are as high as 334 and 152,respectively.In addition,the influence of the thickness of the silicon substrate on the two resonances is analyzed in detail.The proposed all-silicon THz metasurface has great potential in the design and application of high-Q metasurfaces.展开更多
随着物联网的发展,在未来6G通信中,将会产生众多实时性应用场景。在低时延的数据处理需求的驱动下,移动边缘计算将成为提升用户体验和降低网络成本的重要技术。然而,单一的边缘服务器计算能力有限,很难满足计算密集型应用的低时延数据...随着物联网的发展,在未来6G通信中,将会产生众多实时性应用场景。在低时延的数据处理需求的驱动下,移动边缘计算将成为提升用户体验和降低网络成本的重要技术。然而,单一的边缘服务器计算能力有限,很难满足计算密集型应用的低时延数据处理需求。设计了一种异构的多层边缘计算(HetMEC,heterogeneous multi-layer mobile edge computing)网络架构,综合利用云计算中心和多层边缘服务器的计算和传输资源,通过合理分割卸载计算任务,共同为边缘应用提供可靠、高效的计算服务。实验证明,HetMEC网络架构可以有效降低处理时延,提升网络处理速率和稳健性。展开更多
Improved radio-frequency(RF)power performance of InAlN/GaN high electron mobility transistor(HEMT)is achieved by optimizing the rapid thermal annealing(RTA)process for high-performance low-voltage terminal application...Improved radio-frequency(RF)power performance of InAlN/GaN high electron mobility transistor(HEMT)is achieved by optimizing the rapid thermal annealing(RTA)process for high-performance low-voltage terminal applications.By optimizing the RTA temperature and time,the optimal annealing condition is found to enable low parasitic resistance and thus a high-performance device.Besides,compared with the non-optimized RTA HEMT,the optimized one demonstrates smoother ohmic metal surface morphology and better heterojunction quality including the less degraded heterojunction sheet resistance and clearer heterojunction interfaces as well as negligible material out-diffusion from the barrier to the channel and buffer.Benefiting from the lowered parasitic resistance,improved maximum output current density of 2279 mA·mm^(-1)and higher peak extrinsic transconductance of 526 mS·mm^(-1)are obtained for the optimized RTA HEMT.In addition,due to the superior heterojunction quality,the optimized HEMT shows reduced off-state leakage current of 7×10^(-3)mA·mm^(-1)and suppressed current collapse of only 4%,compared with those of 1×10^(-1)mA·mm^(-1)and 15%for the non-optimized one.At 8 GHz and V_(DS)of 6 V,a significantly improved power-added efficiency of 62%and output power density of 0.71 W·mm^(-1)are achieved for the optimized HEMT,as the result of the improvement in output current,knee voltage,off-state leakage current,and current collapse,which reveals the tremendous advantage of the optimized RTA HEMT in high-performance low-voltage terminal applications.展开更多
基金supported by the Agricultural scientific and technological innovation project of Shandong Academy of Agricultural Sciences(CXGC2016D01)Agricultural scientific and technological innovation project of Shandong Academy of Agricultural Sciences-cultivating project for National Natural Science Foundation of China in 2018"identification and function research of Vitis vinifera and Vitis amurensis cold stress response-related micro RNAs"+2 种基金Major Agricultural Application Technology Innovation Project of Shandong Province"Research and Application of Precision Control of Maturation and Product Innovation of Featured Brewing Grape"Major Agricultural Application Technology Innovation Project of Shandong Province"Development of Landmark Wines and Integrated Application of Key Technologies in Shandong Province"Fruit innovation team of modern agricultural industry technology system in Shandong Province-Jinan comprehensive test station(SDAIT-06-21)
文摘At present,the grape and cherry industries in Shandong are in the leading position in China and have driven the development of related high-end manufacturing industries such as wine,brandy,preserved fruit processing,fruit juice processing and health products. Therefore,vigorously developing the grape and cherry industries in Shandong Province and carrying out development and innovation are important parts of Shandong Province in responding to the strategy of national new and old kinetic energy conversion. However,currently the germplasm resources preserved in the fruit tree resources banks in China are only 45% of those in the US and 27. 2% of those in the EU. Moreover,the development of fruit trees resources banks in Shandong is relatively backward in China,and there is still no banks related with grape and cherry germplasm resources in Shandong. Therefore,importance can be attached to the agriculture,forestry,and animal husbandry to build germplasm resources banks for grape and cherry industries in Shandong Province. Building the national-level grape and cherry germplasm resources bank in Shandong Province can also promote the utilization of wild and farm germplasm resources in the future; advance the research on the genes related to disease resistance,stress resistance and quality of grapes and cherries; push forward the construction and development of cherry and grape mutants banks. It is conducive to the research on the agronomic traits of grapes and cherries,and can provide the parents resources for planting innovation and improving the quality of grapes and cherries,as well as promote the development and application of molecular markers of grapes and cherries,including the identification of lines and crossbreeding. Thereby,it cannot only promote the industry development,but also achieve the development of cultivation,breeding and basic research in an all-round way and the development of " production,study and research" going side by side.
基金financially supported by the Ministry of Science and Technology of China as a Key Technology Research and Development Program Project (2023YFC3709001)the Ministry of Education of China as a Discipline Innovation and Intelligence Introduction Project (B17025)Tianjin Science and Technology Bureau as a Key Science and Technology Supporting Project (S19ZC60133)。
基金National Natural Science Foundation of China(Grant No.22377143 and 82341088)the National Key R&D Program of China(Grant No.2021YFC2300700 and 2022YFC2303100).
基金supported by the National Natural Science Funds for Distinguished Young Scholar of China(52325601)the Major Program of National Natural Science Foundation of China(52293412)。
文摘Establishing alternative methods for freshwater production is imperative to effectively alleviate global water scarcity,particularly in land-locked arid regions.In this context,extracting water from the ubiquitous atmospheric moisture is an ingenious strategy for decentralized freshwater production.Sorption-based atmospheric water harvesting(SAWH)shows strong potential for supplying liquid water in a portable and sustainable way even in desert environments.Herein,the latest progress in SAWH technology in terms of materials,devices,and systems is reviewed.Recent advances in sorbent materials with improved water uptake capacity and accelerated sorption–desorption kinetics,including physical sorbents,polymeric hydrogels,composite sorbents,and ionic solutions,are discussed.The thermal designs of SAWH devices for improving energy utilization efficiency,heat transfer,and mass transport are evaluated,and the development of representative SAWH prototypes is clarified in a chronological order.Thereafter,state-of-the-art operation patterns of SAWH systems,incorporating intermittent,daytime continuous and 24-hour continuous patterns,are examined.Furthermore,current challenges and future research goals of this cutting-edge field are outlined.This review highlights the irreplaceable role of heat and mass transfer enhancement and facile structural improvement for constructing high-yield water harvesters.
基金supported in part by the National Key R&D Program of China (Grant Nos.2023YFF1203600 and 2023YFF0718400)the National Natural Science Foundation of China (Grant Nos.62122036,12322407,62034004,61921005,and 12074176)+2 种基金the Leading-edge Technology Program of Jiangsu Natural Science Foundation (Grant No.BK20232004)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDB44000000)support from the AIQ Foundation and the eScience Center of Collaborative Innovation Center of Advanced Microstructures。
文摘Detecting tiny deformations or vibrations, particularly those associated with strains below 1%, is essential in various technological applications. Traditional intrinsic materials, including metals and semiconductors, face challenges in simultaneously achieving initial metallic state and strain-induced insulating state, hindering the development of highly sensitive mechanical sensors. Here we report an ultrasensitive mechanical sensor based on a strain-induced tunable ordered array of metallic and insulating states in the single-crystal bronze-phase vanadium dioxide [VO_(2)(B)] quantum material. It is shown that the initial metallic state in the VO_(2)(B) flake can be tuned to the insulating state by applying a weak uniaxial tensile strain. Such a unique property gives rise to a record-high gauge factor of above 607970, surpassing previous values by an order of magnitude, with excellent linearity and mechanical resilience as well as durability. As a proof-of-concept application, we use our proposed mechanical sensor to demonstrate precise sensing of the micro piece, gentle airflows and water droplets. We attribute the superior performance of the sensor to the strain-induced continuous metal-insulator transition in the single-crystal VO_(2)(B) flake, evidenced by experimental and simulation results. Our findings highlight the potential of exploiting correlated quantum materials for next-generation ultrasensitive flexible mechanical sensors, addressing critical limitations in traditional materials.
基金supported by the Key R&D Program of Zhejiang Province(No.2019C03065)。
文摘Silicon waveguides typically exhibit optical anisotropy,which leads to polarization correlation and single-polarization operations.This consequently creates a demand for polarization-control devices.This paper introduces a CMOS-compatible O-band reconfigurable TE/TM polarization rotator comprising two symmetrical polarization rotator-splitters and phase shifters.This configuration enables dynamic conversion of any linear polarization to its quadratic equivalent.Experimental results indicate that the reconfigurable polarization rotator exhibits an insertion loss of less than 1.5 dB.Furthermore,the bandwidth for a polarization extinction ratio beyond 15 dB exceeds 60 nm.
基金the National Natural Science Foundation of China (Grant Nos. 81788101, T2125011, 11861161004, and 12104447)the National Key R&D Program of China (Grant No. 2018YFA0306600)+5 种基金the Chinese Academy of Sciences (Grant Nos. XDC07000000, GJJSTD20200001,QYZDY-SSW-SLH004,Y201984, and YSBR-068)Innovation Program for Quantum Science and Technology (Grant Nos. 2021ZD0303204 and 2021ZD0302200)the Anhui Initiative in Quantum Information Technologies (Grant No. AHY050000)Hefei Comprehensive National Science CenterChina Postdoctoral Science Foundation (Grant No. 2020M671858)the Fundamental Research Funds for the Central Universities。
文摘We present a magnetic scanning microscope equipped with a nitrogen-vacancy(NV) center scanning probe that has the ability to mechanically tune the strain of soft matter in-situ. The construction of the microscope and a continuous straintuning sample holder are discussed. An optically detected magnetic resonance protocol utilized in the imaging is described.In order to show the reliability of this microscope, the strain conduction is estimated with finite element simulation, and xray diffraction is required for calibration when freestanding crystal films are under consideration. A magnetic imaging result is displayed to demonstrate the nano-scale imaging capability. The microscope presented in this work is helpful in studying strain-coupled magnetic physics such as magnetic phase transition under strain and strain-tuned cycloidal orientation tilting.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.62122036,12322407,62034004,61921005,12074176,and 61974176)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB44000000)+1 种基金the Fundamental Research Funds for the Central Universities(Grant Nos.020414380203 and 020414380179)the support from the AIQ foundation。
文摘Reservoir computing has been considered as a promising intelligent computing paradigm for effectively processing complex temporal information.Exploiting tunable and reproducible dynamics in the single electronic device have been desired to implement the “reservoir” and the “readout” layer of reservoir computing system.Two-dimensional moiré materials,with an artificial lattice constant many times larger than the atomic length scale,are one type of most studied artificial quantum materials in community of material science and condensed-matter physics over the past years.These materials are featured with gate-tunable periodic potential and electronic correlation,thus varying the electric field allows the electrons in the moiré potential per unit cell to exhibit distinct and reproducible dynamics,showing great promise in robust reservoir computing.Here,we report that a moiré synaptic transistor can be used to implement the reservoir computing system with a homogeneous reservoir-readout architecture.The synaptic transistor is fabricated based on an h-BN/bilayer graphene/h-BN moiré heterostructure,exhibiting ferroelectricity-like hysteretic gate voltage dependence of resistance.Varying the magnitude of the gate voltage enables the moiré transistor to switch between long-term memory and shortterm memory with nonlinear dynamics.By employing the short-and long-term memories as the reservoir nodes and weights of the readout layer,respectively,we construct a full-moiré physical neural network and demonstrate that the classification accuracy of 90.8% can be achieved for the MNIST(Modified National Institute of Standards and Technology) handwritten digits database.Our work would pave the way towards the development of neuromorphic computing based on moiré materials.
基金supported by the National Natural Science Foundation of China(Nos.61875179,12004362,and 62175224)。
文摘We propose and experimentally demonstrate a high quality(Q)-factor all-silicon bound state in the continuum(BIC)metasurface with an imperforated air-hole array.The metasurface supports two polarization-insensitive BICs originated from guided mode resonances(GMRs)in the frequency range of 0.4 to 0.6 THz,and the measured Q-factors of the two GMRs are as high as 334 and 152,respectively.In addition,the influence of the thickness of the silicon substrate on the two resonances is analyzed in detail.The proposed all-silicon THz metasurface has great potential in the design and application of high-Q metasurfaces.
文摘随着物联网的发展,在未来6G通信中,将会产生众多实时性应用场景。在低时延的数据处理需求的驱动下,移动边缘计算将成为提升用户体验和降低网络成本的重要技术。然而,单一的边缘服务器计算能力有限,很难满足计算密集型应用的低时延数据处理需求。设计了一种异构的多层边缘计算(HetMEC,heterogeneous multi-layer mobile edge computing)网络架构,综合利用云计算中心和多层边缘服务器的计算和传输资源,通过合理分割卸载计算任务,共同为边缘应用提供可靠、高效的计算服务。实验证明,HetMEC网络架构可以有效降低处理时延,提升网络处理速率和稳健性。
基金Project supported by the National Key Research and Development Project of China (Grant No.2021YFB3602404)part by the National Natural Science Foundation of China (Grant Nos.61904135 and 62234009)+4 种基金the Key R&D Program of Guangzhou (Grant No.202103020002)Wuhu and Xidian University special fund for industry-university-research cooperation (Grant No.XWYCXY-012021014-HT)the Fundamental Research Funds for the Central Universities (Grant No.XJS221110)the Natural Science Foundation of Shaanxi,China (Grant No.2022JM-377)the Innovation Fund of Xidian University (Grant No.YJSJ23019)。
文摘Improved radio-frequency(RF)power performance of InAlN/GaN high electron mobility transistor(HEMT)is achieved by optimizing the rapid thermal annealing(RTA)process for high-performance low-voltage terminal applications.By optimizing the RTA temperature and time,the optimal annealing condition is found to enable low parasitic resistance and thus a high-performance device.Besides,compared with the non-optimized RTA HEMT,the optimized one demonstrates smoother ohmic metal surface morphology and better heterojunction quality including the less degraded heterojunction sheet resistance and clearer heterojunction interfaces as well as negligible material out-diffusion from the barrier to the channel and buffer.Benefiting from the lowered parasitic resistance,improved maximum output current density of 2279 mA·mm^(-1)and higher peak extrinsic transconductance of 526 mS·mm^(-1)are obtained for the optimized RTA HEMT.In addition,due to the superior heterojunction quality,the optimized HEMT shows reduced off-state leakage current of 7×10^(-3)mA·mm^(-1)and suppressed current collapse of only 4%,compared with those of 1×10^(-1)mA·mm^(-1)and 15%for the non-optimized one.At 8 GHz and V_(DS)of 6 V,a significantly improved power-added efficiency of 62%and output power density of 0.71 W·mm^(-1)are achieved for the optimized HEMT,as the result of the improvement in output current,knee voltage,off-state leakage current,and current collapse,which reveals the tremendous advantage of the optimized RTA HEMT in high-performance low-voltage terminal applications.