期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Solid-state reaction synthesis and chemical stability studies in Nd-doped zirconolite-rich ceramics 被引量:6
1
作者 Dan Yin Kuibao Zhang +4 位作者 Le Peng zongsheng he Yuan Liu Haibin Zhang Xirui Lu 《Journal of Rare Earths》 SCIE EI CAS CSCD 2018年第5期492-498,共7页
In this study, Nd-bearing zirconolite-rich ceramics were prepared by solid-state reaction process using CaF2,ZrO2, Ti,TiO2, Fe2 O3 and Nd2O3 as the raw materials. Neodymium was used as trivalent actinide surrogate and... In this study, Nd-bearing zirconolite-rich ceramics were prepared by solid-state reaction process using CaF2,ZrO2, Ti,TiO2, Fe2 O3 and Nd2O3 as the raw materials. Neodymium was used as trivalent actinide surrogate and designed to substitute the Ca and Zr sites of zirconolite with general stoichiometry of Ca1-xZr1-xNd2 xTi2O7(0≤x≤0.3). Density of Fe-Nd-O sample reaches a maximum value of 4.13 g/cm^2 after being sintered at 1325 ℃ for 42 h. Three major phases, namely zirconolite, perovskite and pseudobrookite, are observed in all these samples. The EDX result shows that Nd2O3 can be successfully incorporated into the lattice structure of the prepared zirconolite-rich minerals and replace the Ca sites of zirconolite and perovskite with Fe3+ as the charge-compensating ion. Furthermore, the thermal conductivities are all in the range of 1.51-1.67 W/(m·K). The normalized elemental leaching rates of Ca and Nd in the Fe-Nd-0.2 sample keep in low values of 6.20 × 10^-2 and 4.86 × 10^-4 g/(m^2·d) after 42 d. 展开更多
关键词 ZIRCONOLITE PEROVSKITE Pseudobrookite ND2O3 Chemical stability Rare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部