Recent observational studies showed that breast-conserving surgery(BCS) resulted in superior survival compared to mastectomy in breast cancer patients. This study compared the clinical outcomes of BCS and mastectomy u...Recent observational studies showed that breast-conserving surgery(BCS) resulted in superior survival compared to mastectomy in breast cancer patients. This study compared the clinical outcomes of BCS and mastectomy using propensity score(PS)matching analysis, which had advantages over conventional methods in reducing bias. Nonmetastatic breast cancer patients who underwent BCS and mastectomy were matched 1:1 based on their PS. We used the Kaplan-Meier method and Cox-regression model to estimate the treatment effects. A total of 2,866 patients with a median follow-up time of 67 months were included in the original study population. Although the mastectomy cohort(N=1,219) had more advanced disease compared to the BCS cohort(N=1,647), LRFS was similar between the two groups(93.8% vs. 92.4%, P>0.05). BCS(vs. mastectomy) was associated with improved DFS(73.8% vs. 58.7%, P<0.01) and CSS(91% vs. 78.2%, P<0.01) in the original population. In the PS-matched population(N=1,668), clinicopathological features were equally distributed between the two cohorts. BCS(vs. mastectomy) was not associated with improved DFS(70.7% vs. 66.9%, P>0.05) or CSS(87.5% vs. 84.9%, P>0.05). We found that PS methods reduce bias when estimating treatment effects using observational data. BCS and mastectomy show equivalent outcomes in nonmetastatic breast cancer patients.展开更多
Optical phased array(OPA)technology is considered a promising solution for solid-state beam steering to supersede the traditional mechanical beam steering.As a key component of the LIDAR system for long-range detectio...Optical phased array(OPA)technology is considered a promising solution for solid-state beam steering to supersede the traditional mechanical beam steering.As a key component of the LIDAR system for long-range detection,OPAs featuring a wide steering angle and high resolution without beam aliasing are highly desired.However,a wide steering range requires a waveguide pitch less than half of the wavelength,which is easily subjected to cross talk.Besides,high resolution requires a large aperture,and it is normally achieved by a high count number of waveguides,which complicates the control system.To solve the mentioned issues,we design two high-performance 128-channel OPAs fabricated on a multilayered SiN-on-SOI platform.Attributed to the nonuniform antenna pitch,only 128 waveguides are used to achieve a 4 mm wide aperture.Besides,by virtue of innovative dual-level silicon nitride(Si_(3)N_(4))waveguide grating antennas,the fishbone antenna OPA achieves a 100°×19.4°field of view(FOV)with divergence of 0.021°×0.029°,and the chain antenna OPA realizes a 140°×19.23°FOV with divergence of 0.021°×0.1°.To our best knowledge,140°is the widest lateral steering range in two-dimensional OPA,and 0.029°is the smallest longitudinal divergence.Finally,we embed the OPA into a frequency-modulated continuous-wave system to achieve 100 m distance measurement.The reflected signal from 100 m distance is well detected with 26 dBm input transmitter power,which proves that OPA serves as a promising candidate for transceiving optical signal in a LIDAR system.展开更多
Bessel beam featured with self-healing is essential to the optical sensing applications in the obstacle scattering environment.Integrated on-chip generation of the Bessel beam outperforms the conventional structure by...Bessel beam featured with self-healing is essential to the optical sensing applications in the obstacle scattering environment.Integrated on-chip generation of the Bessel beam outperforms the conventional structure by small size,robustness,and alignment-free scheme.However,the maximum propagation distance(Z_(max))provided by the existing approaches cannot support long-range sensing,and thus,it restricts its potential applications.In this work,we propose an integrated silicon photonic chip with unique structures featured with concentrically distributed grating arrays to generate the Bessel-Gaussian beam with a long propagation distance.The spot with the Bessel function profile is measured at 10.24m without optical lenses,and the photonic chip’s operation wavelength can be continuously performed from 1500 to 1630 nm.To demonstrate the functionality of the generated Bessel-Gaussian beam,we also experimentally measure the rotation speeds of a spinning object via the rotational Doppler Effect and the distance through the phase laser ranging principle.The maximum error of the rotation speed in this experiment is measured to be 0.05%,indicating the minimum error in the current reports.By the compact size,low cost,and mass production potential of the integrated process,our approach is promising to readily enable the Bessel-Gaussian beam in widespread optical communication and micro-manipulation applications.展开更多
High energy density and low-cost lithium-sulfur batteries have been considered as one of the most promising candidates for next-generation energy storage systems.However,the intrinsic problems of the sulfur cathode se...High energy density and low-cost lithium-sulfur batteries have been considered as one of the most promising candidates for next-generation energy storage systems.However,the intrinsic problems of the sulfur cathode severely restrict their further practical application.Here,a unique double-shell architecture composed of hollow carbon spheres@interlayer-expanded and sulfur-enriched MoS2+x nanocoating composite has been developed as an efficient sulfur host.A uniform precursor coating derived from heteropolyanions-induced polymerization of pyrrole leads to space confinement effect during the in-situ sulfurization process,which generates the interlayer-expanded and sulfur-enriched MoS2+x nanosheets on amorphous carbon hollow spheres.This new sulfur host possesses multifarious merits including sufficient voids for loading sulfur active materials,high electronic conductivity,and fast lithium-ion diffusive pathways.In addition,additional active edge sites of MoS2+x accompanied by the nitrogen-doped carbon species endow the sulfur host with immobilizing and catalyzing effects on the soluble polysulfide species,dramatically accelerating their conversion kinetics and re-utilization.The detailed defect-induced interface catalytic reaction mechanism is firstly proposed.As expected,the delicately-designed sulfur host exhibits an outstanding initial discharge capacity of 1,249 mAh·g^−1 at 0.2 C and a desirable rate performance(593 mAh·g^−1 at 5.0 C),implying its great prospects in achieving superior electrochemical performances for advanced lithium sulfur batteries.展开更多
It is quite often that the theoretic model used in the Kalman filtering may not be sufficiently accurate for practical applications,due to the fact that the covariances of noises are not exactly known.Our previous wor...It is quite often that the theoretic model used in the Kalman filtering may not be sufficiently accurate for practical applications,due to the fact that the covariances of noises are not exactly known.Our previous work reveals that in such scenario the filter calculated mean square errors(FMSE)and the true mean square errors(TMSE)become inconsistent,while FMSE and TMSE are consistent in the Kalman filter with accurate models.This can lead to low credibility of state estimation regardless of using Kalman filters or adaptive Kalman filters.Obviously,it is important to study the inconsistency issue since it is vital to understand the quantitative influence induced by the inaccurate models.Aiming at this,the concept of credibility is adopted to discuss the inconsistency problem in this paper.In order to formulate the degree of the credibility,a trust factor is constructed based on the FMSE and the TMSE.However,the trust factor can not be directly computed since the TMSE cannot be found for practical applications.Based on the definition of trust factor,the estimation of the trust factor is successfully modified to online estimation of the TMSE.More importantly,a necessary and sufficient condition is found,which turns out to be the basis for better design of Kalman filters with high performance.Accordingly,beyond trust factor estimation with Sage-Husa technique(TFE-SHT),three novel trust factor estimation methods,which are directly numerical solving method(TFE-DNS),the particle swarm optimization method(PSO)and expectation maximization-particle swarm optimization method(EM-PSO)are proposed.The analysis and simulation results both show that the proposed TFE-DNS is better than the TFE-SHT for the case of single unknown noise covariance.Meanwhile,the proposed EMPSO performs completely better than the EM and PSO on the estimation of the credibility degree and state when both noise covariances should be estimated online.展开更多
Light detection and ranging(LiDAR)serves as one of the key components in the fields of autonomous driving,surveying mapping,and environment detection.Conventionally,dense points clouds are pursued by LiDAR systems to ...Light detection and ranging(LiDAR)serves as one of the key components in the fields of autonomous driving,surveying mapping,and environment detection.Conventionally,dense points clouds are pursued by LiDAR systems to provide high-definition 3D images.However,the LiDAR is typically used to produce abundant yet redundant data for scanning the homogeneous background of scenes,resulting in power waste and excessive processing time.Hence,it is highly desirable for a LiDAR system to“gaze”at the target of interest by dense scanning and rough sparse scans on the uninteresting areas.Here,we propose a LiDAR structure based on an optical phased array(OPA)with reconfigurable apertures to achieve such a gaze scanning function.By virtue of the cascaded optical switch integrated on the OPA chip,a 64-,128-,192-,or 256-channel antenna can be selected discretionarily to construct an aperture with variable size.The corresponding divergence angles for the far-field beam are 0.32°,0.15°,0.10°,and 0.08°,respectively.The reconfigurable-aperture OPA enables the LiDAR system to perform rough scans via the large beam spots prior to fine scans of the target by using the tiny beam spots.In this way,the OPA-based LiDAR can perform the“gaze”function and achieve full-range scanning efficiently.The scanning time and power consumption can be reduced by 1/4 while precise details of the target are maintained.Finally,we embed the OPA into a frequency-modulated continuous-wave(FMCW)system to demonstrate the“gaze”function in beam scanning.Experiment results show that the number of precise scanning points can be reduced by 2/3 yet can obtain the reasonable outline of the target.The reconfigurable-aperture OPA(RA-OPA)can be a promising candidate for the applications of rapid recognition,like car navigation and robot vision.展开更多
Full-spectrum phosphor-converted white-light-emitting diodes(pc-WLED)are emerging as a mainstream technology in semiconductor lighting.Nevertheless,high-performance blue phosphor which can be excited efficiently by a ...Full-spectrum phosphor-converted white-light-emitting diodes(pc-WLED)are emerging as a mainstream technology in semiconductor lighting.Nevertheless,high-performance blue phosphor which can be excited efficiently by a 400 nm NUV diode chip is still lacking.Herein,we present a blue-emitting Na_(3)KMg_(7)(PO_(4))6:Eu^(2+)phosphor synthesized by the solid-reaction method.Particularly,we find that the using of Li_(2)CO_(3)as flux can significantly improve the crystal quality and thus the emission efficiency of the phosphor.Meanwhile,the excitation peak of the phosphor shifts from 365 to 400 nm,which is pivotal for efficient NUV(400 nm)diode chip excitation.The practical Eu^(2+)concentration is also enhanced by using Li_(2)CO_(3)as flux,and the absorption efficiency is greatly increased.This phosphor exhibits superior PL thermal stability,namely retains 94%integrated photoluminescence intensity at 150℃of that at 25℃.As a result,the optimized phosphor shows an emission band peaked at 437 nm with a bandwidth of 40 nm and a high external photoluminescence quantum yield of 51.7%.Finally,a pc-WLED was fabricated by using NKMPO:Eu^(2+)blue,Sr_(2)SiO_(4):Eu^(2+)green,CaAlSiN_(3):Eu^(2+)red phosphors,and a 400 nm NUV diode chip.It shows a high color rendering index of R_(a)=96.4 and a correlated color temperature of 4358 K.These results prove that NKMPO:Eu^(2+)is a promising blue phosphor for full-spectrum WLED based on NUV diode chips.展开更多
基金supported by grants from the National Key Research and Development Program of China (2016YFC1302300)the National Natural Science Foundation of China (81720108029, 81621004, 81490750)+2 种基金Guangdong Science and Technology Department (2016B030229004)Guangzhou Science Technology and Innovation Commission (201803040015)supported by FountainValley Life Sciences Fund of University of Chinese Academy of Sciences Education Foundation
文摘Recent observational studies showed that breast-conserving surgery(BCS) resulted in superior survival compared to mastectomy in breast cancer patients. This study compared the clinical outcomes of BCS and mastectomy using propensity score(PS)matching analysis, which had advantages over conventional methods in reducing bias. Nonmetastatic breast cancer patients who underwent BCS and mastectomy were matched 1:1 based on their PS. We used the Kaplan-Meier method and Cox-regression model to estimate the treatment effects. A total of 2,866 patients with a median follow-up time of 67 months were included in the original study population. Although the mastectomy cohort(N=1,219) had more advanced disease compared to the BCS cohort(N=1,647), LRFS was similar between the two groups(93.8% vs. 92.4%, P>0.05). BCS(vs. mastectomy) was associated with improved DFS(73.8% vs. 58.7%, P<0.01) and CSS(91% vs. 78.2%, P<0.01) in the original population. In the PS-matched population(N=1,668), clinicopathological features were equally distributed between the two cohorts. BCS(vs. mastectomy) was not associated with improved DFS(70.7% vs. 66.9%, P>0.05) or CSS(87.5% vs. 84.9%, P>0.05). We found that PS methods reduce bias when estimating treatment effects using observational data. BCS and mastectomy show equivalent outcomes in nonmetastatic breast cancer patients.
基金National Key Research and Development Program of China(2016YFE0200700)National Natural Science Foundation of China(61627820,61934003,62090054,62105173,62105174)+2 种基金Jilin Scientific and Technological Development Program(20200501007GX)Program for Jilin University Science and Technology Innovative Research Team(JLUSTIRT,2021TD-39)Guangdong Basic and Applied Basic Research Foundation(2019A1515111206)。
文摘Optical phased array(OPA)technology is considered a promising solution for solid-state beam steering to supersede the traditional mechanical beam steering.As a key component of the LIDAR system for long-range detection,OPAs featuring a wide steering angle and high resolution without beam aliasing are highly desired.However,a wide steering range requires a waveguide pitch less than half of the wavelength,which is easily subjected to cross talk.Besides,high resolution requires a large aperture,and it is normally achieved by a high count number of waveguides,which complicates the control system.To solve the mentioned issues,we design two high-performance 128-channel OPAs fabricated on a multilayered SiN-on-SOI platform.Attributed to the nonuniform antenna pitch,only 128 waveguides are used to achieve a 4 mm wide aperture.Besides,by virtue of innovative dual-level silicon nitride(Si_(3)N_(4))waveguide grating antennas,the fishbone antenna OPA achieves a 100°×19.4°field of view(FOV)with divergence of 0.021°×0.029°,and the chain antenna OPA realizes a 140°×19.23°FOV with divergence of 0.021°×0.1°.To our best knowledge,140°is the widest lateral steering range in two-dimensional OPA,and 0.029°is the smallest longitudinal divergence.Finally,we embed the OPA into a frequency-modulated continuous-wave system to achieve 100 m distance measurement.The reflected signal from 100 m distance is well detected with 26 dBm input transmitter power,which proves that OPA serves as a promising candidate for transceiving optical signal in a LIDAR system.
基金supported by National Key R&D Program of China under Grants no.2022YFB2804504The National Natural Science Foundation of China under Grants nos.62090054,61934003,62105173 and 62105174+1 种基金Major scientific and technological program of Jilin Province under Grants nos.20200501007GX and 20210301014GXProgram for JLU Science and Technology Innovative Research Team(JLUSTIRT,2021TD-39).
文摘Bessel beam featured with self-healing is essential to the optical sensing applications in the obstacle scattering environment.Integrated on-chip generation of the Bessel beam outperforms the conventional structure by small size,robustness,and alignment-free scheme.However,the maximum propagation distance(Z_(max))provided by the existing approaches cannot support long-range sensing,and thus,it restricts its potential applications.In this work,we propose an integrated silicon photonic chip with unique structures featured with concentrically distributed grating arrays to generate the Bessel-Gaussian beam with a long propagation distance.The spot with the Bessel function profile is measured at 10.24m without optical lenses,and the photonic chip’s operation wavelength can be continuously performed from 1500 to 1630 nm.To demonstrate the functionality of the generated Bessel-Gaussian beam,we also experimentally measure the rotation speeds of a spinning object via the rotational Doppler Effect and the distance through the phase laser ranging principle.The maximum error of the rotation speed in this experiment is measured to be 0.05%,indicating the minimum error in the current reports.By the compact size,low cost,and mass production potential of the integrated process,our approach is promising to readily enable the Bessel-Gaussian beam in widespread optical communication and micro-manipulation applications.
基金The work was financially supported by the National Natural Science Foundation of China(Nos.51672146 and 21805157)the Natural Science Foundation of Shandong Province(No.ZR2018BEM011).
文摘High energy density and low-cost lithium-sulfur batteries have been considered as one of the most promising candidates for next-generation energy storage systems.However,the intrinsic problems of the sulfur cathode severely restrict their further practical application.Here,a unique double-shell architecture composed of hollow carbon spheres@interlayer-expanded and sulfur-enriched MoS2+x nanocoating composite has been developed as an efficient sulfur host.A uniform precursor coating derived from heteropolyanions-induced polymerization of pyrrole leads to space confinement effect during the in-situ sulfurization process,which generates the interlayer-expanded and sulfur-enriched MoS2+x nanosheets on amorphous carbon hollow spheres.This new sulfur host possesses multifarious merits including sufficient voids for loading sulfur active materials,high electronic conductivity,and fast lithium-ion diffusive pathways.In addition,additional active edge sites of MoS2+x accompanied by the nitrogen-doped carbon species endow the sulfur host with immobilizing and catalyzing effects on the soluble polysulfide species,dramatically accelerating their conversion kinetics and re-utilization.The detailed defect-induced interface catalytic reaction mechanism is firstly proposed.As expected,the delicately-designed sulfur host exhibits an outstanding initial discharge capacity of 1,249 mAh·g^−1 at 0.2 C and a desirable rate performance(593 mAh·g^−1 at 5.0 C),implying its great prospects in achieving superior electrochemical performances for advanced lithium sulfur batteries.
基金supported by the National Natural Science Foundation of China(62033010)Aeronautical Science Foundation of China(2019460T5001)。
文摘It is quite often that the theoretic model used in the Kalman filtering may not be sufficiently accurate for practical applications,due to the fact that the covariances of noises are not exactly known.Our previous work reveals that in such scenario the filter calculated mean square errors(FMSE)and the true mean square errors(TMSE)become inconsistent,while FMSE and TMSE are consistent in the Kalman filter with accurate models.This can lead to low credibility of state estimation regardless of using Kalman filters or adaptive Kalman filters.Obviously,it is important to study the inconsistency issue since it is vital to understand the quantitative influence induced by the inaccurate models.Aiming at this,the concept of credibility is adopted to discuss the inconsistency problem in this paper.In order to formulate the degree of the credibility,a trust factor is constructed based on the FMSE and the TMSE.However,the trust factor can not be directly computed since the TMSE cannot be found for practical applications.Based on the definition of trust factor,the estimation of the trust factor is successfully modified to online estimation of the TMSE.More importantly,a necessary and sufficient condition is found,which turns out to be the basis for better design of Kalman filters with high performance.Accordingly,beyond trust factor estimation with Sage-Husa technique(TFE-SHT),three novel trust factor estimation methods,which are directly numerical solving method(TFE-DNS),the particle swarm optimization method(PSO)and expectation maximization-particle swarm optimization method(EM-PSO)are proposed.The analysis and simulation results both show that the proposed TFE-DNS is better than the TFE-SHT for the case of single unknown noise covariance.Meanwhile,the proposed EMPSO performs completely better than the EM and PSO on the estimation of the credibility degree and state when both noise covariances should be estimated online.
基金Program for Jilin University Science and Technology Innovative Research Team(2021TD-39)Jilin Provincial Development and Reform Commission Project(2020C056)+2 种基金Major Scientific and Technological Program of Jilin Province(20210301014GX)National Natural Science Foundation of China(62105173,62105174,61934003,62090054)National Key Research and Development Program of China(2022YFB2804504)。
文摘Light detection and ranging(LiDAR)serves as one of the key components in the fields of autonomous driving,surveying mapping,and environment detection.Conventionally,dense points clouds are pursued by LiDAR systems to provide high-definition 3D images.However,the LiDAR is typically used to produce abundant yet redundant data for scanning the homogeneous background of scenes,resulting in power waste and excessive processing time.Hence,it is highly desirable for a LiDAR system to“gaze”at the target of interest by dense scanning and rough sparse scans on the uninteresting areas.Here,we propose a LiDAR structure based on an optical phased array(OPA)with reconfigurable apertures to achieve such a gaze scanning function.By virtue of the cascaded optical switch integrated on the OPA chip,a 64-,128-,192-,or 256-channel antenna can be selected discretionarily to construct an aperture with variable size.The corresponding divergence angles for the far-field beam are 0.32°,0.15°,0.10°,and 0.08°,respectively.The reconfigurable-aperture OPA enables the LiDAR system to perform rough scans via the large beam spots prior to fine scans of the target by using the tiny beam spots.In this way,the OPA-based LiDAR can perform the“gaze”function and achieve full-range scanning efficiently.The scanning time and power consumption can be reduced by 1/4 while precise details of the target are maintained.Finally,we embed the OPA into a frequency-modulated continuous-wave(FMCW)system to demonstrate the“gaze”function in beam scanning.Experiment results show that the number of precise scanning points can be reduced by 2/3 yet can obtain the reasonable outline of the target.The reconfigurable-aperture OPA(RA-OPA)can be a promising candidate for the applications of rapid recognition,like car navigation and robot vision.
基金Project supported by the National Natural Science Foundation of China(11974351)。
文摘Full-spectrum phosphor-converted white-light-emitting diodes(pc-WLED)are emerging as a mainstream technology in semiconductor lighting.Nevertheless,high-performance blue phosphor which can be excited efficiently by a 400 nm NUV diode chip is still lacking.Herein,we present a blue-emitting Na_(3)KMg_(7)(PO_(4))6:Eu^(2+)phosphor synthesized by the solid-reaction method.Particularly,we find that the using of Li_(2)CO_(3)as flux can significantly improve the crystal quality and thus the emission efficiency of the phosphor.Meanwhile,the excitation peak of the phosphor shifts from 365 to 400 nm,which is pivotal for efficient NUV(400 nm)diode chip excitation.The practical Eu^(2+)concentration is also enhanced by using Li_(2)CO_(3)as flux,and the absorption efficiency is greatly increased.This phosphor exhibits superior PL thermal stability,namely retains 94%integrated photoluminescence intensity at 150℃of that at 25℃.As a result,the optimized phosphor shows an emission band peaked at 437 nm with a bandwidth of 40 nm and a high external photoluminescence quantum yield of 51.7%.Finally,a pc-WLED was fabricated by using NKMPO:Eu^(2+)blue,Sr_(2)SiO_(4):Eu^(2+)green,CaAlSiN_(3):Eu^(2+)red phosphors,and a 400 nm NUV diode chip.It shows a high color rendering index of R_(a)=96.4 and a correlated color temperature of 4358 K.These results prove that NKMPO:Eu^(2+)is a promising blue phosphor for full-spectrum WLED based on NUV diode chips.