Described as a“don't eat me”signal,CD47 becomes a vital immune checkpoint in cancer.Its interaction with signal regulatory protein alpha(SIRPa)prevents macrophage phagocytosis.In recent years,a growing body of e...Described as a“don't eat me”signal,CD47 becomes a vital immune checkpoint in cancer.Its interaction with signal regulatory protein alpha(SIRPa)prevents macrophage phagocytosis.In recent years,a growing body of evidences have unveiled that CD47-based combination therapy exhibits a superior anti-cancer effect.Latest clinical trials about CD47 have adopted the regimen of collaborating with other therapies or developing CD47-directed bispecific antibodies,indicating the combination strategy as a general trend of the future.In this review,clinical and preclinical cases about the current combination strategies targeting CD47 are collected,their underlying mechanisms of action are discussed,and ideas from future perspectives are shared.展开更多
Sn-based metal organic complexes with coordination bonds,multi-active sites,and high theoretical capacity have attracted much attention as promising anodes for lithium ion batteries.However,the low electrical conducti...Sn-based metal organic complexes with coordination bonds,multi-active sites,and high theoretical capacity have attracted much attention as promising anodes for lithium ion batteries.However,the low electrical conductivity and huge volume changes restricted their electrochemical stability and practical utilization.Herein,Snbased anode with superior electrochemical performance,including a high reversible capacity of 1050.1 mAh·g^(-1)at 2 A·g^(-1)and a stable capacity of 1105.5 mAh·g^(-1)after 500 cycles at 1 A·g^(-1),was fabricated via a low-temperature calcination strategy from Sn metal organic complexes.The low-temperature calcination process regulates Sn-O bond and prevents the agglomeration of SnO_(2),generating highly dispersed SnO_(2) decorated metal organic complexes and providing sufficient active sites for ion storage.Ex situ characterizations expound that the undecomposed Sn-based metal organic complexes could be transformed into SnO_(2) during lithiation and delithiation,which enhances the electrical conductivity and induces a strong pseudo-capacitive behavior,accelerating the electrochemical kinetics;the multiple solid electrolyte interface with inflexible LiF and flexible ROCO_(2)Li buffers the volume variation of the electrode,resulting in its high electrochemical stability.This work provides a simple strategy for preparing excellent Sn-based anodes from metal organic complexes and reveals the lithium storage mechanism of the prepared Snbased anode.展开更多
Clear cell sarcoma(CCS)is a rare melanocytic soft tissue sarcoma known for itspropensity to metastasize to the lymph nodes and typically has an unfavorableprognosis.Currently,surgical resection is the primary treatmen...Clear cell sarcoma(CCS)is a rare melanocytic soft tissue sarcoma known for itspropensity to metastasize to the lymph nodes and typically has an unfavorableprognosis.Currently,surgical resection is the primary treatment for localizedCCS,while radiotherapy and chemotherapy are preferred for metastatic cases.The roles of adjuvant chemotherapy,radiotherapy,and lymph node dissection arecontroversial.Although immunotherapy has emerged as a promising avenue inCCS treatment research,there are no established clinical standards for postoperativefollow-up.This editorial discusses a recent article by Liu et al,with afocus on current diagnostic modalities,treatment approaches,and the challengingprognosis associated with CCS.Our aim is to underscore the importance of longtermpatient follow-up in CCS management.展开更多
Evaluating the physical mechanisms that link hydraulic fracturing(HF) operations to induced earthquakes and the anticipated form of the resulting events is significant in informing subsurface fluid injection operation...Evaluating the physical mechanisms that link hydraulic fracturing(HF) operations to induced earthquakes and the anticipated form of the resulting events is significant in informing subsurface fluid injection operations. Current understanding supports the overriding role of the effective stress magnitude in triggering earthquakes, while the impact of change rate of effective stress has not been systematically addressed. In this work, a modified critical stiffness was brought up to investigate the likelihood, impact,and mitigation of induced seismicity during and after hydraulic fracturing by developing a poroelastic model based on rate-and-state fraction law and linear stability analysis. In the new criterion, the change rate of effective stress was considered a key variable to explore the evolution of this criterion and hence the likelihood of instability slip of fault. A coupled fluid flow-deformation model was used to represent the entire hydraulic fracturing process in COMSOL Multiphysics. The possibility of triggering an earthquake throughout the entire hydraulic fracturing process, from fracturing to cessation, was investigated considering different fault locations, orientations, and positions along the fault. The competition between the effects of the magnitude and change rate of effective stress was notable at each fracturing stage. The effective stress magnitude is a significant controlling factor during fracturing events, with the change rate dominating when fracturing is suddenly started or stopped. Instability dominates when the magnitude of the effective stress increases(constant injection at each fracturing stage) and the change rate of effective stress decreases(the injection process is suddenly stopped). Fracturing with a high injection rate, a fault adjacent to the hydraulic fracturing location and the position of the junction between the reservoir and fault are important to reduce the Coulomb failure stress(CFS) and enhance the critical stiffness as the significant disturbance of stresses at thes展开更多
基金supported by The Science and Technology Development Fund,Macao SAR,China(File No.:0129/2019/A3)Internal Research Grant of the State Key Laboratory of Quality Research in Chinese Medicine,University of Macao(File No.:QRCM-IRG2022-016,China)+1 种基金the 2020 Guangdong Provincial Science and Technology Innovation Strategy Special Fund(Guangdong-Hong Kong-Macao Joint Lab,File No.:2020B1212030006,China)the National Natural Science Foundation of China(File No.:81973516)。
文摘Described as a“don't eat me”signal,CD47 becomes a vital immune checkpoint in cancer.Its interaction with signal regulatory protein alpha(SIRPa)prevents macrophage phagocytosis.In recent years,a growing body of evidences have unveiled that CD47-based combination therapy exhibits a superior anti-cancer effect.Latest clinical trials about CD47 have adopted the regimen of collaborating with other therapies or developing CD47-directed bispecific antibodies,indicating the combination strategy as a general trend of the future.In this review,clinical and preclinical cases about the current combination strategies targeting CD47 are collected,their underlying mechanisms of action are discussed,and ideas from future perspectives are shared.
基金financially supported by the Program for Science&Technology Innovation Talents in Universities of Henan Province(No.24HASTIT006)the Natural Science Foundations of China(No.42002040)+2 种基金Natural Science Foundations of Henan Province(No.222300420502)Key Science and Technology Program of Henan Province(No.222102240044)Key Scientific Research Projects in Colleges and Universities of Henan Province(No.21B610010)。
文摘Sn-based metal organic complexes with coordination bonds,multi-active sites,and high theoretical capacity have attracted much attention as promising anodes for lithium ion batteries.However,the low electrical conductivity and huge volume changes restricted their electrochemical stability and practical utilization.Herein,Snbased anode with superior electrochemical performance,including a high reversible capacity of 1050.1 mAh·g^(-1)at 2 A·g^(-1)and a stable capacity of 1105.5 mAh·g^(-1)after 500 cycles at 1 A·g^(-1),was fabricated via a low-temperature calcination strategy from Sn metal organic complexes.The low-temperature calcination process regulates Sn-O bond and prevents the agglomeration of SnO_(2),generating highly dispersed SnO_(2) decorated metal organic complexes and providing sufficient active sites for ion storage.Ex situ characterizations expound that the undecomposed Sn-based metal organic complexes could be transformed into SnO_(2) during lithiation and delithiation,which enhances the electrical conductivity and induces a strong pseudo-capacitive behavior,accelerating the electrochemical kinetics;the multiple solid electrolyte interface with inflexible LiF and flexible ROCO_(2)Li buffers the volume variation of the electrode,resulting in its high electrochemical stability.This work provides a simple strategy for preparing excellent Sn-based anodes from metal organic complexes and reveals the lithium storage mechanism of the prepared Snbased anode.
基金Liaoning Province Applied Basic Research Program Joint Program Project,No.2022JH2/101500076Shenyang Young and Middle-aged Science and Technology Innovation Talent Support Program,No.RC200438+1 种基金Tree Planting Program of Shengjing Hospital,No.M1595the Doctoral Start-up Foundation of Liaoning Province,No.2022-BS-127.
文摘Clear cell sarcoma(CCS)is a rare melanocytic soft tissue sarcoma known for itspropensity to metastasize to the lymph nodes and typically has an unfavorableprognosis.Currently,surgical resection is the primary treatment for localizedCCS,while radiotherapy and chemotherapy are preferred for metastatic cases.The roles of adjuvant chemotherapy,radiotherapy,and lymph node dissection arecontroversial.Although immunotherapy has emerged as a promising avenue inCCS treatment research,there are no established clinical standards for postoperativefollow-up.This editorial discusses a recent article by Liu et al,with afocus on current diagnostic modalities,treatment approaches,and the challengingprognosis associated with CCS.Our aim is to underscore the importance of longtermpatient follow-up in CCS management.
基金funded by the joint fund of the National Key Research and Development Program of China(No.2021YFC2902101)National Natural Science Foundation of China(Grant No.52374084)+1 种基金Open Foundation of National Energy shale gas R&D(experiment) center(2022-KFKT-12)the 111 Project(B17009)。
文摘Evaluating the physical mechanisms that link hydraulic fracturing(HF) operations to induced earthquakes and the anticipated form of the resulting events is significant in informing subsurface fluid injection operations. Current understanding supports the overriding role of the effective stress magnitude in triggering earthquakes, while the impact of change rate of effective stress has not been systematically addressed. In this work, a modified critical stiffness was brought up to investigate the likelihood, impact,and mitigation of induced seismicity during and after hydraulic fracturing by developing a poroelastic model based on rate-and-state fraction law and linear stability analysis. In the new criterion, the change rate of effective stress was considered a key variable to explore the evolution of this criterion and hence the likelihood of instability slip of fault. A coupled fluid flow-deformation model was used to represent the entire hydraulic fracturing process in COMSOL Multiphysics. The possibility of triggering an earthquake throughout the entire hydraulic fracturing process, from fracturing to cessation, was investigated considering different fault locations, orientations, and positions along the fault. The competition between the effects of the magnitude and change rate of effective stress was notable at each fracturing stage. The effective stress magnitude is a significant controlling factor during fracturing events, with the change rate dominating when fracturing is suddenly started or stopped. Instability dominates when the magnitude of the effective stress increases(constant injection at each fracturing stage) and the change rate of effective stress decreases(the injection process is suddenly stopped). Fracturing with a high injection rate, a fault adjacent to the hydraulic fracturing location and the position of the junction between the reservoir and fault are important to reduce the Coulomb failure stress(CFS) and enhance the critical stiffness as the significant disturbance of stresses at thes