Background:To understand the relationship between myocardial contractility and ex-ternal stimuli,detecting ex vivo myocardial contractility is necessary.Methods:We elaborated a method for contractility detection of is...Background:To understand the relationship between myocardial contractility and ex-ternal stimuli,detecting ex vivo myocardial contractility is necessary.Methods:We elaborated a method for contractility detection of isolated C57 mouse papillary muscle using Myostation-Intact system under different frequencies,volt-ages,and calcium concentrations.Results:The results indicated that the basal contractility of the papillary muscle was 0.27±0.03 mN at 10 V,500-ms pulse duration,and 1 Hz.From 0.1 to 1.0 Hz,con-tractility decreased with an increase in frequency(0.45±0.11-0.10±0.02 mN).The voltage-initiated muscle contractility varied from 3 to 6 V,and the contractility gradu-ally increased as the voltage increased from 6 to 10 V(0.14±0.02-0.28±0.03 mN).Moreover,the muscle contractility increased when the calcium concentration was increased from 1.5 to 3 mM(0.45±0.17-1.11±0.05 mN);however,the contractility stopped increasing even when the concentration was increased to 7.5 mM(1.02±0.23 mN).Conclusions:Our method guaranteed the survivability of papillary muscle ex vivo and provided instructions for Myostation-Intact users for isolated muscle contractility investigations.展开更多
基金Specialized Project of Fuwai Hospital,Grant/Award Number:2022-FWTS07Shenzhen Sanming Project of Medicine,Grant/Award Number:2016-SZZF02+1 种基金National Natural Science Foundation of China,Grant/Award Number:81900343CAMS Innovation Fund for Medical Sciences,Grant/Award Number:CIFMS,2021-I2M-C&T-A-011。
文摘Background:To understand the relationship between myocardial contractility and ex-ternal stimuli,detecting ex vivo myocardial contractility is necessary.Methods:We elaborated a method for contractility detection of isolated C57 mouse papillary muscle using Myostation-Intact system under different frequencies,volt-ages,and calcium concentrations.Results:The results indicated that the basal contractility of the papillary muscle was 0.27±0.03 mN at 10 V,500-ms pulse duration,and 1 Hz.From 0.1 to 1.0 Hz,con-tractility decreased with an increase in frequency(0.45±0.11-0.10±0.02 mN).The voltage-initiated muscle contractility varied from 3 to 6 V,and the contractility gradu-ally increased as the voltage increased from 6 to 10 V(0.14±0.02-0.28±0.03 mN).Moreover,the muscle contractility increased when the calcium concentration was increased from 1.5 to 3 mM(0.45±0.17-1.11±0.05 mN);however,the contractility stopped increasing even when the concentration was increased to 7.5 mM(1.02±0.23 mN).Conclusions:Our method guaranteed the survivability of papillary muscle ex vivo and provided instructions for Myostation-Intact users for isolated muscle contractility investigations.